Start work on rating calculator
authorunc0rr
Thu, 12 Nov 2015 23:38:01 +0300
changeset 11358 55360683db75
parent 11357 89fd907ccdec
child 11359 e6a9528f02f7
Start work on rating calculator
gameServer/OfficialServer/updateRating.hs
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/gameServer/OfficialServer/updateRating.hs	Thu Nov 12 23:38:01 2015 +0300
@@ -0,0 +1,67 @@
+{-
+    Glicko2, as described in http://www.glicko.net/glicko/glicko2.pdf
+-}
+
+module Main where
+
+--import Data.Map as Map
+
+data RatingData = RatingData {
+        ratingValue
+        , rD
+        , volatility :: Double
+    }
+data GameData = GameData {
+        rating :: RatingData,
+        opponentRating :: RatingData,
+        gameScore :: Double
+    }
+
+τ, ε :: Double
+τ = 0.3
+ε = 0.000001
+
+g_φ :: Double -> Double
+g_φ φ = 1 / sqrt (1 + 3 * φ^2 / pi^2)
+
+calcE :: GameData -> (Double, Double)
+calcE (GameData oldRating oppRating s) = (
+    1 / (1 + exp (g_φᵢ * (μᵢ - μ)))
+    , g_φᵢ
+    )
+    where
+        μ = (ratingValue oldRating - 1500) / 173.7178
+        φ = rD oldRating / 173.7178
+        μᵢ = (ratingValue oppRating - 1500) / 173.7178
+        φᵢ = rD oppRating / 173.7178
+        g_φᵢ = g_φ φᵢ
+
+
+calcNewRating :: [GameData] -> RatingData
+calcNewRating [] = undefined
+calcNewRating games@(GameData oldRating _ _ : _) = undefined
+    where
+        _Es = map calcE games
+        υ = 1 / sum (map υ_p _Es)
+        υ_p (_Eᵢ, g_φᵢ) = g_φᵢ ^ 2 * _Eᵢ * (1 - _Eᵢ)
+        _Δ = υ * sum (map _Δ_p $ zip _Es (map gameScore games))
+        _Δ_p ((_Eᵢ, g_φᵢ), sᵢ) = g_φᵢ * (sᵢ - _Eᵢ)
+
+        μ = (ratingValue oldRating - 1500) / 173.7178
+        φ = rD oldRating / 173.7178
+        σ = volatility oldRating
+
+        a = log (σ ^ 2)
+        f :: Double -> Double
+        f x = exp x * (_Δ ^ 2 - φ ^ 2 - υ - exp x) / 2 / (φ ^ 2 + υ + exp x) ^ 2 - (x - a) / τ ^ 2
+
+        _A = a
+        _B = if _Δ ^ 2 > φ ^ 2 + υ then log (_Δ ^ 2 - φ ^ 2 - υ) else head . dropWhile ((>) 0 . f) . map (\k -> a - k * τ) $ [1 ..]
+        fA = f _A
+        fB = f _B
+        σ' = (\(_A, _, _, _) -> exp (_A / 2)) . head . dropWhile (\(_A, _, _B, _) -> abs (_B - _A) > ε) $ iterate step5 (_A, fA, _B, fB)
+        step5 (_A, fA, _B, fB) = let _C = _A + (_A - _B) * fA / (fB - fA); fC = f _C in
+                                     if fC * fB < 0 then (_B, fB, _C, fC) else (_A, fA / 2, _C, fC)
+
+
+main = undefined