--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/misc/libfreetype/src/cff/cffparse.c Mon Apr 25 01:46:54 2011 +0200
@@ -0,0 +1,924 @@
+/***************************************************************************/
+/* */
+/* cffparse.c */
+/* */
+/* CFF token stream parser (body) */
+/* */
+/* Copyright 1996-2001, 2002, 2003, 2004, 2007, 2008, 2009, 2010 by */
+/* David Turner, Robert Wilhelm, and Werner Lemberg. */
+/* */
+/* This file is part of the FreeType project, and may only be used, */
+/* modified, and distributed under the terms of the FreeType project */
+/* license, LICENSE.TXT. By continuing to use, modify, or distribute */
+/* this file you indicate that you have read the license and */
+/* understand and accept it fully. */
+/* */
+/***************************************************************************/
+
+
+#include <ft2build.h>
+#include "cffparse.h"
+#include FT_INTERNAL_STREAM_H
+#include FT_INTERNAL_DEBUG_H
+
+#include "cfferrs.h"
+#include "cffpic.h"
+
+
+ /*************************************************************************/
+ /* */
+ /* The macro FT_COMPONENT is used in trace mode. It is an implicit */
+ /* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log */
+ /* messages during execution. */
+ /* */
+#undef FT_COMPONENT
+#define FT_COMPONENT trace_cffparse
+
+
+
+
+ FT_LOCAL_DEF( void )
+ cff_parser_init( CFF_Parser parser,
+ FT_UInt code,
+ void* object,
+ FT_Library library)
+ {
+ FT_MEM_ZERO( parser, sizeof ( *parser ) );
+
+ parser->top = parser->stack;
+ parser->object_code = code;
+ parser->object = object;
+ parser->library = library;
+ }
+
+
+ /* read an integer */
+ static FT_Long
+ cff_parse_integer( FT_Byte* start,
+ FT_Byte* limit )
+ {
+ FT_Byte* p = start;
+ FT_Int v = *p++;
+ FT_Long val = 0;
+
+
+ if ( v == 28 )
+ {
+ if ( p + 2 > limit )
+ goto Bad;
+
+ val = (FT_Short)( ( (FT_Int)p[0] << 8 ) | p[1] );
+ p += 2;
+ }
+ else if ( v == 29 )
+ {
+ if ( p + 4 > limit )
+ goto Bad;
+
+ val = ( (FT_Long)p[0] << 24 ) |
+ ( (FT_Long)p[1] << 16 ) |
+ ( (FT_Long)p[2] << 8 ) |
+ p[3];
+ p += 4;
+ }
+ else if ( v < 247 )
+ {
+ val = v - 139;
+ }
+ else if ( v < 251 )
+ {
+ if ( p + 1 > limit )
+ goto Bad;
+
+ val = ( v - 247 ) * 256 + p[0] + 108;
+ p++;
+ }
+ else
+ {
+ if ( p + 1 > limit )
+ goto Bad;
+
+ val = -( v - 251 ) * 256 - p[0] - 108;
+ p++;
+ }
+
+ Exit:
+ return val;
+
+ Bad:
+ val = 0;
+ goto Exit;
+ }
+
+
+ static const FT_Long power_tens[] =
+ {
+ 1L,
+ 10L,
+ 100L,
+ 1000L,
+ 10000L,
+ 100000L,
+ 1000000L,
+ 10000000L,
+ 100000000L,
+ 1000000000L
+ };
+
+
+ /* read a real */
+ static FT_Fixed
+ cff_parse_real( FT_Byte* start,
+ FT_Byte* limit,
+ FT_Long power_ten,
+ FT_Long* scaling )
+ {
+ FT_Byte* p = start;
+ FT_UInt nib;
+ FT_UInt phase;
+
+ FT_Long result, number, exponent;
+ FT_Int sign = 0, exponent_sign = 0;
+ FT_Long exponent_add, integer_length, fraction_length;
+
+
+ if ( scaling )
+ *scaling = 0;
+
+ result = 0;
+
+ number = 0;
+ exponent = 0;
+
+ exponent_add = 0;
+ integer_length = 0;
+ fraction_length = 0;
+
+ /* First of all, read the integer part. */
+ phase = 4;
+
+ for (;;)
+ {
+ /* If we entered this iteration with phase == 4, we need to */
+ /* read a new byte. This also skips past the initial 0x1E. */
+ if ( phase )
+ {
+ p++;
+
+ /* Make sure we don't read past the end. */
+ if ( p >= limit )
+ goto Exit;
+ }
+
+ /* Get the nibble. */
+ nib = ( p[0] >> phase ) & 0xF;
+ phase = 4 - phase;
+
+ if ( nib == 0xE )
+ sign = 1;
+ else if ( nib > 9 )
+ break;
+ else
+ {
+ /* Increase exponent if we can't add the digit. */
+ if ( number >= 0xCCCCCCCL )
+ exponent_add++;
+ /* Skip leading zeros. */
+ else if ( nib || number )
+ {
+ integer_length++;
+ number = number * 10 + nib;
+ }
+ }
+ }
+
+ /* Read fraction part, if any. */
+ if ( nib == 0xa )
+ for (;;)
+ {
+ /* If we entered this iteration with phase == 4, we need */
+ /* to read a new byte. */
+ if ( phase )
+ {
+ p++;
+
+ /* Make sure we don't read past the end. */
+ if ( p >= limit )
+ goto Exit;
+ }
+
+ /* Get the nibble. */
+ nib = ( p[0] >> phase ) & 0xF;
+ phase = 4 - phase;
+ if ( nib >= 10 )
+ break;
+
+ /* Skip leading zeros if possible. */
+ if ( !nib && !number )
+ exponent_add--;
+ /* Only add digit if we don't overflow. */
+ else if ( number < 0xCCCCCCCL && fraction_length < 9 )
+ {
+ fraction_length++;
+ number = number * 10 + nib;
+ }
+ }
+
+ /* Read exponent, if any. */
+ if ( nib == 12 )
+ {
+ exponent_sign = 1;
+ nib = 11;
+ }
+
+ if ( nib == 11 )
+ {
+ for (;;)
+ {
+ /* If we entered this iteration with phase == 4, */
+ /* we need to read a new byte. */
+ if ( phase )
+ {
+ p++;
+
+ /* Make sure we don't read past the end. */
+ if ( p >= limit )
+ goto Exit;
+ }
+
+ /* Get the nibble. */
+ nib = ( p[0] >> phase ) & 0xF;
+ phase = 4 - phase;
+ if ( nib >= 10 )
+ break;
+
+ exponent = exponent * 10 + nib;
+
+ /* Arbitrarily limit exponent. */
+ if ( exponent > 1000 )
+ goto Exit;
+ }
+
+ if ( exponent_sign )
+ exponent = -exponent;
+ }
+
+ /* We don't check `power_ten' and `exponent_add'. */
+ exponent += power_ten + exponent_add;
+
+ if ( scaling )
+ {
+ /* Only use `fraction_length'. */
+ fraction_length += integer_length;
+ exponent += integer_length;
+
+ if ( fraction_length <= 5 )
+ {
+ if ( number > 0x7FFFL )
+ {
+ result = FT_DivFix( number, 10 );
+ *scaling = exponent - fraction_length + 1;
+ }
+ else
+ {
+ if ( exponent > 0 )
+ {
+ FT_Long new_fraction_length, shift;
+
+
+ /* Make `scaling' as small as possible. */
+ new_fraction_length = FT_MIN( exponent, 5 );
+ exponent -= new_fraction_length;
+ shift = new_fraction_length - fraction_length;
+
+ number *= power_tens[shift];
+ if ( number > 0x7FFFL )
+ {
+ number /= 10;
+ exponent += 1;
+ }
+ }
+ else
+ exponent -= fraction_length;
+
+ result = number << 16;
+ *scaling = exponent;
+ }
+ }
+ else
+ {
+ if ( ( number / power_tens[fraction_length - 5] ) > 0x7FFFL )
+ {
+ result = FT_DivFix( number, power_tens[fraction_length - 4] );
+ *scaling = exponent - 4;
+ }
+ else
+ {
+ result = FT_DivFix( number, power_tens[fraction_length - 5] );
+ *scaling = exponent - 5;
+ }
+ }
+ }
+ else
+ {
+ integer_length += exponent;
+ fraction_length -= exponent;
+
+ /* Check for overflow and underflow. */
+ if ( FT_ABS( integer_length ) > 5 )
+ goto Exit;
+
+ /* Remove non-significant digits. */
+ if ( integer_length < 0 )
+ {
+ number /= power_tens[-integer_length];
+ fraction_length += integer_length;
+ }
+
+ /* this can only happen if exponent was non-zero */
+ if ( fraction_length == 10 )
+ {
+ number /= 10;
+ fraction_length -= 1;
+ }
+
+ /* Convert into 16.16 format. */
+ if ( fraction_length > 0 )
+ {
+ if ( ( number / power_tens[fraction_length] ) > 0x7FFFL )
+ goto Exit;
+
+ result = FT_DivFix( number, power_tens[fraction_length] );
+ }
+ else
+ {
+ number *= power_tens[-fraction_length];
+
+ if ( number > 0x7FFFL )
+ goto Exit;
+
+ result = number << 16;
+ }
+ }
+
+ if ( sign )
+ result = -result;
+
+ Exit:
+ return result;
+ }
+
+
+ /* read a number, either integer or real */
+ static FT_Long
+ cff_parse_num( FT_Byte** d )
+ {
+ return **d == 30 ? ( cff_parse_real( d[0], d[1], 0, NULL ) >> 16 )
+ : cff_parse_integer( d[0], d[1] );
+ }
+
+
+ /* read a floating point number, either integer or real */
+ static FT_Fixed
+ cff_parse_fixed( FT_Byte** d )
+ {
+ return **d == 30 ? cff_parse_real( d[0], d[1], 0, NULL )
+ : cff_parse_integer( d[0], d[1] ) << 16;
+ }
+
+
+ /* read a floating point number, either integer or real, */
+ /* but return `10^scaling' times the number read in */
+ static FT_Fixed
+ cff_parse_fixed_scaled( FT_Byte** d,
+ FT_Long scaling )
+ {
+ return **d == 30 ? cff_parse_real( d[0], d[1], scaling, NULL )
+ : ( cff_parse_integer( d[0], d[1] ) *
+ power_tens[scaling] ) << 16;
+ }
+
+
+ /* read a floating point number, either integer or real, */
+ /* and return it as precise as possible -- `scaling' returns */
+ /* the scaling factor (as a power of 10) */
+ static FT_Fixed
+ cff_parse_fixed_dynamic( FT_Byte** d,
+ FT_Long* scaling )
+ {
+ FT_ASSERT( scaling );
+
+ if ( **d == 30 )
+ return cff_parse_real( d[0], d[1], 0, scaling );
+ else
+ {
+ FT_Long number;
+ FT_Int integer_length;
+
+
+ number = cff_parse_integer( d[0], d[1] );
+
+ if ( number > 0x7FFFL )
+ {
+ for ( integer_length = 5; integer_length < 10; integer_length++ )
+ if ( number < power_tens[integer_length] )
+ break;
+
+ if ( ( number / power_tens[integer_length - 5] ) > 0x7FFFL )
+ {
+ *scaling = integer_length - 4;
+ return FT_DivFix( number, power_tens[integer_length - 4] );
+ }
+ else
+ {
+ *scaling = integer_length - 5;
+ return FT_DivFix( number, power_tens[integer_length - 5] );
+ }
+ }
+ else
+ {
+ *scaling = 0;
+ return number << 16;
+ }
+ }
+ }
+
+
+ static FT_Error
+ cff_parse_font_matrix( CFF_Parser parser )
+ {
+ CFF_FontRecDict dict = (CFF_FontRecDict)parser->object;
+ FT_Matrix* matrix = &dict->font_matrix;
+ FT_Vector* offset = &dict->font_offset;
+ FT_ULong* upm = &dict->units_per_em;
+ FT_Byte** data = parser->stack;
+ FT_Error error = CFF_Err_Stack_Underflow;
+
+
+ if ( parser->top >= parser->stack + 6 )
+ {
+ FT_Long scaling;
+
+
+ error = CFF_Err_Ok;
+
+ /* We expect a well-formed font matrix, this is, the matrix elements */
+ /* `xx' and `yy' are of approximately the same magnitude. To avoid */
+ /* loss of precision, we use the magnitude of element `xx' to scale */
+ /* all other elements. The scaling factor is then contained in the */
+ /* `units_per_em' value. */
+
+ matrix->xx = cff_parse_fixed_dynamic( data++, &scaling );
+
+ scaling = -scaling;
+
+ if ( scaling < 0 || scaling > 9 )
+ {
+ /* Return default matrix in case of unlikely values. */
+ matrix->xx = 0x10000L;
+ matrix->yx = 0;
+ matrix->yx = 0;
+ matrix->yy = 0x10000L;
+ offset->x = 0;
+ offset->y = 0;
+ *upm = 1;
+
+ goto Exit;
+ }
+
+ matrix->yx = cff_parse_fixed_scaled( data++, scaling );
+ matrix->xy = cff_parse_fixed_scaled( data++, scaling );
+ matrix->yy = cff_parse_fixed_scaled( data++, scaling );
+ offset->x = cff_parse_fixed_scaled( data++, scaling );
+ offset->y = cff_parse_fixed_scaled( data, scaling );
+
+ *upm = power_tens[scaling];
+ }
+
+ Exit:
+ return error;
+ }
+
+
+ static FT_Error
+ cff_parse_font_bbox( CFF_Parser parser )
+ {
+ CFF_FontRecDict dict = (CFF_FontRecDict)parser->object;
+ FT_BBox* bbox = &dict->font_bbox;
+ FT_Byte** data = parser->stack;
+ FT_Error error;
+
+
+ error = CFF_Err_Stack_Underflow;
+
+ if ( parser->top >= parser->stack + 4 )
+ {
+ bbox->xMin = FT_RoundFix( cff_parse_fixed( data++ ) );
+ bbox->yMin = FT_RoundFix( cff_parse_fixed( data++ ) );
+ bbox->xMax = FT_RoundFix( cff_parse_fixed( data++ ) );
+ bbox->yMax = FT_RoundFix( cff_parse_fixed( data ) );
+ error = CFF_Err_Ok;
+ }
+
+ return error;
+ }
+
+
+ static FT_Error
+ cff_parse_private_dict( CFF_Parser parser )
+ {
+ CFF_FontRecDict dict = (CFF_FontRecDict)parser->object;
+ FT_Byte** data = parser->stack;
+ FT_Error error;
+
+
+ error = CFF_Err_Stack_Underflow;
+
+ if ( parser->top >= parser->stack + 2 )
+ {
+ dict->private_size = cff_parse_num( data++ );
+ dict->private_offset = cff_parse_num( data );
+ error = CFF_Err_Ok;
+ }
+
+ return error;
+ }
+
+
+ static FT_Error
+ cff_parse_cid_ros( CFF_Parser parser )
+ {
+ CFF_FontRecDict dict = (CFF_FontRecDict)parser->object;
+ FT_Byte** data = parser->stack;
+ FT_Error error;
+
+
+ error = CFF_Err_Stack_Underflow;
+
+ if ( parser->top >= parser->stack + 3 )
+ {
+ dict->cid_registry = (FT_UInt)cff_parse_num ( data++ );
+ dict->cid_ordering = (FT_UInt)cff_parse_num ( data++ );
+ if ( **data == 30 )
+ FT_TRACE1(( "cff_parse_cid_ros: real supplement is rounded\n" ));
+ dict->cid_supplement = cff_parse_num( data );
+ if ( dict->cid_supplement < 0 )
+ FT_TRACE1(( "cff_parse_cid_ros: negative supplement %d is found\n",
+ dict->cid_supplement ));
+ error = CFF_Err_Ok;
+ }
+
+ return error;
+ }
+
+
+#define CFF_FIELD_NUM( code, name ) \
+ CFF_FIELD( code, name, cff_kind_num )
+#define CFF_FIELD_FIXED( code, name ) \
+ CFF_FIELD( code, name, cff_kind_fixed )
+#define CFF_FIELD_FIXED_1000( code, name ) \
+ CFF_FIELD( code, name, cff_kind_fixed_thousand )
+#define CFF_FIELD_STRING( code, name ) \
+ CFF_FIELD( code, name, cff_kind_string )
+#define CFF_FIELD_BOOL( code, name ) \
+ CFF_FIELD( code, name, cff_kind_bool )
+#define CFF_FIELD_DELTA( code, name, max ) \
+ CFF_FIELD( code, name, cff_kind_delta )
+
+#define CFFCODE_TOPDICT 0x1000
+#define CFFCODE_PRIVATE 0x2000
+
+#ifndef FT_CONFIG_OPTION_PIC
+
+#define CFF_FIELD_CALLBACK( code, name ) \
+ { \
+ cff_kind_callback, \
+ code | CFFCODE, \
+ 0, 0, \
+ cff_parse_ ## name, \
+ 0, 0 \
+ },
+
+#undef CFF_FIELD
+#define CFF_FIELD( code, name, kind ) \
+ { \
+ kind, \
+ code | CFFCODE, \
+ FT_FIELD_OFFSET( name ), \
+ FT_FIELD_SIZE( name ), \
+ 0, 0, 0 \
+ },
+
+#undef CFF_FIELD_DELTA
+#define CFF_FIELD_DELTA( code, name, max ) \
+ { \
+ cff_kind_delta, \
+ code | CFFCODE, \
+ FT_FIELD_OFFSET( name ), \
+ FT_FIELD_SIZE_DELTA( name ), \
+ 0, \
+ max, \
+ FT_FIELD_OFFSET( num_ ## name ) \
+ },
+
+ static const CFF_Field_Handler cff_field_handlers[] =
+ {
+
+#include "cfftoken.h"
+
+ { 0, 0, 0, 0, 0, 0, 0 }
+ };
+
+
+#else /* FT_CONFIG_OPTION_PIC */
+
+ void FT_Destroy_Class_cff_field_handlers(FT_Library library, CFF_Field_Handler* clazz)
+ {
+ FT_Memory memory = library->memory;
+ if ( clazz )
+ FT_FREE( clazz );
+ }
+
+ FT_Error FT_Create_Class_cff_field_handlers(FT_Library library, CFF_Field_Handler** output_class)
+ {
+ CFF_Field_Handler* clazz;
+ FT_Error error;
+ FT_Memory memory = library->memory;
+ int i=0;
+
+#undef CFF_FIELD
+#undef CFF_FIELD_DELTA
+#undef CFF_FIELD_CALLBACK
+#define CFF_FIELD_CALLBACK( code, name ) i++;
+#define CFF_FIELD( code, name, kind ) i++;
+#define CFF_FIELD_DELTA( code, name, max ) i++;
+
+#include "cfftoken.h"
+ i++;/*{ 0, 0, 0, 0, 0, 0, 0 }*/
+
+ if ( FT_ALLOC( clazz, sizeof(CFF_Field_Handler)*i ) )
+ return error;
+
+ i=0;
+#undef CFF_FIELD
+#undef CFF_FIELD_DELTA
+#undef CFF_FIELD_CALLBACK
+
+#define CFF_FIELD_CALLBACK( code_, name_ ) \
+ clazz[i].kind = cff_kind_callback; \
+ clazz[i].code = code_ | CFFCODE; \
+ clazz[i].offset = 0; \
+ clazz[i].size = 0; \
+ clazz[i].reader = cff_parse_ ## name_; \
+ clazz[i].array_max = 0; \
+ clazz[i].count_offset = 0; \
+ i++;
+
+#undef CFF_FIELD
+#define CFF_FIELD( code_, name_, kind_ ) \
+ clazz[i].kind = kind_; \
+ clazz[i].code = code_ | CFFCODE; \
+ clazz[i].offset = FT_FIELD_OFFSET( name_ ); \
+ clazz[i].size = FT_FIELD_SIZE( name_ ); \
+ clazz[i].reader = 0; \
+ clazz[i].array_max = 0; \
+ clazz[i].count_offset = 0; \
+ i++; \
+
+#undef CFF_FIELD_DELTA
+#define CFF_FIELD_DELTA( code_, name_, max_ ) \
+ clazz[i].kind = cff_kind_delta; \
+ clazz[i].code = code_ | CFFCODE; \
+ clazz[i].offset = FT_FIELD_OFFSET( name_ ); \
+ clazz[i].size = FT_FIELD_SIZE_DELTA( name_ ); \
+ clazz[i].reader = 0; \
+ clazz[i].array_max = max_; \
+ clazz[i].count_offset = FT_FIELD_OFFSET( num_ ## name_ ); \
+ i++;
+
+#include "cfftoken.h"
+
+ clazz[i].kind = 0;
+ clazz[i].code = 0;
+ clazz[i].offset = 0;
+ clazz[i].size = 0;
+ clazz[i].reader = 0;
+ clazz[i].array_max = 0;
+ clazz[i].count_offset = 0;
+
+ *output_class = clazz;
+ return CFF_Err_Ok;
+ }
+
+
+#endif /* FT_CONFIG_OPTION_PIC */
+
+
+ FT_LOCAL_DEF( FT_Error )
+ cff_parser_run( CFF_Parser parser,
+ FT_Byte* start,
+ FT_Byte* limit )
+ {
+ FT_Byte* p = start;
+ FT_Error error = CFF_Err_Ok;
+ FT_Library library = parser->library;
+ FT_UNUSED(library);
+
+
+ parser->top = parser->stack;
+ parser->start = start;
+ parser->limit = limit;
+ parser->cursor = start;
+
+ while ( p < limit )
+ {
+ FT_UInt v = *p;
+
+
+ if ( v >= 27 && v != 31 )
+ {
+ /* it's a number; we will push its position on the stack */
+ if ( parser->top - parser->stack >= CFF_MAX_STACK_DEPTH )
+ goto Stack_Overflow;
+
+ *parser->top ++ = p;
+
+ /* now, skip it */
+ if ( v == 30 )
+ {
+ /* skip real number */
+ p++;
+ for (;;)
+ {
+ /* An unterminated floating point number at the */
+ /* end of a dictionary is invalid but harmless. */
+ if ( p >= limit )
+ goto Exit;
+ v = p[0] >> 4;
+ if ( v == 15 )
+ break;
+ v = p[0] & 0xF;
+ if ( v == 15 )
+ break;
+ p++;
+ }
+ }
+ else if ( v == 28 )
+ p += 2;
+ else if ( v == 29 )
+ p += 4;
+ else if ( v > 246 )
+ p += 1;
+ }
+ else
+ {
+ /* This is not a number, hence it's an operator. Compute its code */
+ /* and look for it in our current list. */
+
+ FT_UInt code;
+ FT_UInt num_args = (FT_UInt)
+ ( parser->top - parser->stack );
+ const CFF_Field_Handler* field;
+
+
+ *parser->top = p;
+ code = v;
+ if ( v == 12 )
+ {
+ /* two byte operator */
+ p++;
+ if ( p >= limit )
+ goto Syntax_Error;
+
+ code = 0x100 | p[0];
+ }
+ code = code | parser->object_code;
+
+ for ( field = FT_CFF_FIELD_HANDLERS_GET; field->kind; field++ )
+ {
+ if ( field->code == (FT_Int)code )
+ {
+ /* we found our field's handler; read it */
+ FT_Long val;
+ FT_Byte* q = (FT_Byte*)parser->object + field->offset;
+
+
+ /* check that we have enough arguments -- except for */
+ /* delta encoded arrays, which can be empty */
+ if ( field->kind != cff_kind_delta && num_args < 1 )
+ goto Stack_Underflow;
+
+ switch ( field->kind )
+ {
+ case cff_kind_bool:
+ case cff_kind_string:
+ case cff_kind_num:
+ val = cff_parse_num( parser->stack );
+ goto Store_Number;
+
+ case cff_kind_fixed:
+ val = cff_parse_fixed( parser->stack );
+ goto Store_Number;
+
+ case cff_kind_fixed_thousand:
+ val = cff_parse_fixed_scaled( parser->stack, 3 );
+
+ Store_Number:
+ switch ( field->size )
+ {
+ case (8 / FT_CHAR_BIT):
+ *(FT_Byte*)q = (FT_Byte)val;
+ break;
+
+ case (16 / FT_CHAR_BIT):
+ *(FT_Short*)q = (FT_Short)val;
+ break;
+
+ case (32 / FT_CHAR_BIT):
+ *(FT_Int32*)q = (FT_Int)val;
+ break;
+
+ default: /* for 64-bit systems */
+ *(FT_Long*)q = val;
+ }
+ break;
+
+ case cff_kind_delta:
+ {
+ FT_Byte* qcount = (FT_Byte*)parser->object +
+ field->count_offset;
+
+ FT_Byte** data = parser->stack;
+
+
+ if ( num_args > field->array_max )
+ num_args = field->array_max;
+
+ /* store count */
+ *qcount = (FT_Byte)num_args;
+
+ val = 0;
+ while ( num_args > 0 )
+ {
+ val += cff_parse_num( data++ );
+ switch ( field->size )
+ {
+ case (8 / FT_CHAR_BIT):
+ *(FT_Byte*)q = (FT_Byte)val;
+ break;
+
+ case (16 / FT_CHAR_BIT):
+ *(FT_Short*)q = (FT_Short)val;
+ break;
+
+ case (32 / FT_CHAR_BIT):
+ *(FT_Int32*)q = (FT_Int)val;
+ break;
+
+ default: /* for 64-bit systems */
+ *(FT_Long*)q = val;
+ }
+
+ q += field->size;
+ num_args--;
+ }
+ }
+ break;
+
+ default: /* callback */
+ error = field->reader( parser );
+ if ( error )
+ goto Exit;
+ }
+ goto Found;
+ }
+ }
+
+ /* this is an unknown operator, or it is unsupported; */
+ /* we will ignore it for now. */
+
+ Found:
+ /* clear stack */
+ parser->top = parser->stack;
+ }
+ p++;
+ }
+
+ Exit:
+ return error;
+
+ Stack_Overflow:
+ error = CFF_Err_Invalid_Argument;
+ goto Exit;
+
+ Stack_Underflow:
+ error = CFF_Err_Invalid_Argument;
+ goto Exit;
+
+ Syntax_Error:
+ error = CFF_Err_Invalid_Argument;
+ goto Exit;
+ }
+
+
+/* END */