|
1 /***************************************************************************/ |
|
2 /* */ |
|
3 /* cffparse.c */ |
|
4 /* */ |
|
5 /* CFF token stream parser (body) */ |
|
6 /* */ |
|
7 /* Copyright 1996-2001, 2002, 2003, 2004, 2007, 2008, 2009, 2010 by */ |
|
8 /* David Turner, Robert Wilhelm, and Werner Lemberg. */ |
|
9 /* */ |
|
10 /* This file is part of the FreeType project, and may only be used, */ |
|
11 /* modified, and distributed under the terms of the FreeType project */ |
|
12 /* license, LICENSE.TXT. By continuing to use, modify, or distribute */ |
|
13 /* this file you indicate that you have read the license and */ |
|
14 /* understand and accept it fully. */ |
|
15 /* */ |
|
16 /***************************************************************************/ |
|
17 |
|
18 |
|
19 #include <ft2build.h> |
|
20 #include "cffparse.h" |
|
21 #include FT_INTERNAL_STREAM_H |
|
22 #include FT_INTERNAL_DEBUG_H |
|
23 |
|
24 #include "cfferrs.h" |
|
25 #include "cffpic.h" |
|
26 |
|
27 |
|
28 /*************************************************************************/ |
|
29 /* */ |
|
30 /* The macro FT_COMPONENT is used in trace mode. It is an implicit */ |
|
31 /* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log */ |
|
32 /* messages during execution. */ |
|
33 /* */ |
|
34 #undef FT_COMPONENT |
|
35 #define FT_COMPONENT trace_cffparse |
|
36 |
|
37 |
|
38 |
|
39 |
|
40 FT_LOCAL_DEF( void ) |
|
41 cff_parser_init( CFF_Parser parser, |
|
42 FT_UInt code, |
|
43 void* object, |
|
44 FT_Library library) |
|
45 { |
|
46 FT_MEM_ZERO( parser, sizeof ( *parser ) ); |
|
47 |
|
48 parser->top = parser->stack; |
|
49 parser->object_code = code; |
|
50 parser->object = object; |
|
51 parser->library = library; |
|
52 } |
|
53 |
|
54 |
|
55 /* read an integer */ |
|
56 static FT_Long |
|
57 cff_parse_integer( FT_Byte* start, |
|
58 FT_Byte* limit ) |
|
59 { |
|
60 FT_Byte* p = start; |
|
61 FT_Int v = *p++; |
|
62 FT_Long val = 0; |
|
63 |
|
64 |
|
65 if ( v == 28 ) |
|
66 { |
|
67 if ( p + 2 > limit ) |
|
68 goto Bad; |
|
69 |
|
70 val = (FT_Short)( ( (FT_Int)p[0] << 8 ) | p[1] ); |
|
71 p += 2; |
|
72 } |
|
73 else if ( v == 29 ) |
|
74 { |
|
75 if ( p + 4 > limit ) |
|
76 goto Bad; |
|
77 |
|
78 val = ( (FT_Long)p[0] << 24 ) | |
|
79 ( (FT_Long)p[1] << 16 ) | |
|
80 ( (FT_Long)p[2] << 8 ) | |
|
81 p[3]; |
|
82 p += 4; |
|
83 } |
|
84 else if ( v < 247 ) |
|
85 { |
|
86 val = v - 139; |
|
87 } |
|
88 else if ( v < 251 ) |
|
89 { |
|
90 if ( p + 1 > limit ) |
|
91 goto Bad; |
|
92 |
|
93 val = ( v - 247 ) * 256 + p[0] + 108; |
|
94 p++; |
|
95 } |
|
96 else |
|
97 { |
|
98 if ( p + 1 > limit ) |
|
99 goto Bad; |
|
100 |
|
101 val = -( v - 251 ) * 256 - p[0] - 108; |
|
102 p++; |
|
103 } |
|
104 |
|
105 Exit: |
|
106 return val; |
|
107 |
|
108 Bad: |
|
109 val = 0; |
|
110 goto Exit; |
|
111 } |
|
112 |
|
113 |
|
114 static const FT_Long power_tens[] = |
|
115 { |
|
116 1L, |
|
117 10L, |
|
118 100L, |
|
119 1000L, |
|
120 10000L, |
|
121 100000L, |
|
122 1000000L, |
|
123 10000000L, |
|
124 100000000L, |
|
125 1000000000L |
|
126 }; |
|
127 |
|
128 |
|
129 /* read a real */ |
|
130 static FT_Fixed |
|
131 cff_parse_real( FT_Byte* start, |
|
132 FT_Byte* limit, |
|
133 FT_Long power_ten, |
|
134 FT_Long* scaling ) |
|
135 { |
|
136 FT_Byte* p = start; |
|
137 FT_UInt nib; |
|
138 FT_UInt phase; |
|
139 |
|
140 FT_Long result, number, exponent; |
|
141 FT_Int sign = 0, exponent_sign = 0; |
|
142 FT_Long exponent_add, integer_length, fraction_length; |
|
143 |
|
144 |
|
145 if ( scaling ) |
|
146 *scaling = 0; |
|
147 |
|
148 result = 0; |
|
149 |
|
150 number = 0; |
|
151 exponent = 0; |
|
152 |
|
153 exponent_add = 0; |
|
154 integer_length = 0; |
|
155 fraction_length = 0; |
|
156 |
|
157 /* First of all, read the integer part. */ |
|
158 phase = 4; |
|
159 |
|
160 for (;;) |
|
161 { |
|
162 /* If we entered this iteration with phase == 4, we need to */ |
|
163 /* read a new byte. This also skips past the initial 0x1E. */ |
|
164 if ( phase ) |
|
165 { |
|
166 p++; |
|
167 |
|
168 /* Make sure we don't read past the end. */ |
|
169 if ( p >= limit ) |
|
170 goto Exit; |
|
171 } |
|
172 |
|
173 /* Get the nibble. */ |
|
174 nib = ( p[0] >> phase ) & 0xF; |
|
175 phase = 4 - phase; |
|
176 |
|
177 if ( nib == 0xE ) |
|
178 sign = 1; |
|
179 else if ( nib > 9 ) |
|
180 break; |
|
181 else |
|
182 { |
|
183 /* Increase exponent if we can't add the digit. */ |
|
184 if ( number >= 0xCCCCCCCL ) |
|
185 exponent_add++; |
|
186 /* Skip leading zeros. */ |
|
187 else if ( nib || number ) |
|
188 { |
|
189 integer_length++; |
|
190 number = number * 10 + nib; |
|
191 } |
|
192 } |
|
193 } |
|
194 |
|
195 /* Read fraction part, if any. */ |
|
196 if ( nib == 0xa ) |
|
197 for (;;) |
|
198 { |
|
199 /* If we entered this iteration with phase == 4, we need */ |
|
200 /* to read a new byte. */ |
|
201 if ( phase ) |
|
202 { |
|
203 p++; |
|
204 |
|
205 /* Make sure we don't read past the end. */ |
|
206 if ( p >= limit ) |
|
207 goto Exit; |
|
208 } |
|
209 |
|
210 /* Get the nibble. */ |
|
211 nib = ( p[0] >> phase ) & 0xF; |
|
212 phase = 4 - phase; |
|
213 if ( nib >= 10 ) |
|
214 break; |
|
215 |
|
216 /* Skip leading zeros if possible. */ |
|
217 if ( !nib && !number ) |
|
218 exponent_add--; |
|
219 /* Only add digit if we don't overflow. */ |
|
220 else if ( number < 0xCCCCCCCL && fraction_length < 9 ) |
|
221 { |
|
222 fraction_length++; |
|
223 number = number * 10 + nib; |
|
224 } |
|
225 } |
|
226 |
|
227 /* Read exponent, if any. */ |
|
228 if ( nib == 12 ) |
|
229 { |
|
230 exponent_sign = 1; |
|
231 nib = 11; |
|
232 } |
|
233 |
|
234 if ( nib == 11 ) |
|
235 { |
|
236 for (;;) |
|
237 { |
|
238 /* If we entered this iteration with phase == 4, */ |
|
239 /* we need to read a new byte. */ |
|
240 if ( phase ) |
|
241 { |
|
242 p++; |
|
243 |
|
244 /* Make sure we don't read past the end. */ |
|
245 if ( p >= limit ) |
|
246 goto Exit; |
|
247 } |
|
248 |
|
249 /* Get the nibble. */ |
|
250 nib = ( p[0] >> phase ) & 0xF; |
|
251 phase = 4 - phase; |
|
252 if ( nib >= 10 ) |
|
253 break; |
|
254 |
|
255 exponent = exponent * 10 + nib; |
|
256 |
|
257 /* Arbitrarily limit exponent. */ |
|
258 if ( exponent > 1000 ) |
|
259 goto Exit; |
|
260 } |
|
261 |
|
262 if ( exponent_sign ) |
|
263 exponent = -exponent; |
|
264 } |
|
265 |
|
266 /* We don't check `power_ten' and `exponent_add'. */ |
|
267 exponent += power_ten + exponent_add; |
|
268 |
|
269 if ( scaling ) |
|
270 { |
|
271 /* Only use `fraction_length'. */ |
|
272 fraction_length += integer_length; |
|
273 exponent += integer_length; |
|
274 |
|
275 if ( fraction_length <= 5 ) |
|
276 { |
|
277 if ( number > 0x7FFFL ) |
|
278 { |
|
279 result = FT_DivFix( number, 10 ); |
|
280 *scaling = exponent - fraction_length + 1; |
|
281 } |
|
282 else |
|
283 { |
|
284 if ( exponent > 0 ) |
|
285 { |
|
286 FT_Long new_fraction_length, shift; |
|
287 |
|
288 |
|
289 /* Make `scaling' as small as possible. */ |
|
290 new_fraction_length = FT_MIN( exponent, 5 ); |
|
291 exponent -= new_fraction_length; |
|
292 shift = new_fraction_length - fraction_length; |
|
293 |
|
294 number *= power_tens[shift]; |
|
295 if ( number > 0x7FFFL ) |
|
296 { |
|
297 number /= 10; |
|
298 exponent += 1; |
|
299 } |
|
300 } |
|
301 else |
|
302 exponent -= fraction_length; |
|
303 |
|
304 result = number << 16; |
|
305 *scaling = exponent; |
|
306 } |
|
307 } |
|
308 else |
|
309 { |
|
310 if ( ( number / power_tens[fraction_length - 5] ) > 0x7FFFL ) |
|
311 { |
|
312 result = FT_DivFix( number, power_tens[fraction_length - 4] ); |
|
313 *scaling = exponent - 4; |
|
314 } |
|
315 else |
|
316 { |
|
317 result = FT_DivFix( number, power_tens[fraction_length - 5] ); |
|
318 *scaling = exponent - 5; |
|
319 } |
|
320 } |
|
321 } |
|
322 else |
|
323 { |
|
324 integer_length += exponent; |
|
325 fraction_length -= exponent; |
|
326 |
|
327 /* Check for overflow and underflow. */ |
|
328 if ( FT_ABS( integer_length ) > 5 ) |
|
329 goto Exit; |
|
330 |
|
331 /* Remove non-significant digits. */ |
|
332 if ( integer_length < 0 ) |
|
333 { |
|
334 number /= power_tens[-integer_length]; |
|
335 fraction_length += integer_length; |
|
336 } |
|
337 |
|
338 /* this can only happen if exponent was non-zero */ |
|
339 if ( fraction_length == 10 ) |
|
340 { |
|
341 number /= 10; |
|
342 fraction_length -= 1; |
|
343 } |
|
344 |
|
345 /* Convert into 16.16 format. */ |
|
346 if ( fraction_length > 0 ) |
|
347 { |
|
348 if ( ( number / power_tens[fraction_length] ) > 0x7FFFL ) |
|
349 goto Exit; |
|
350 |
|
351 result = FT_DivFix( number, power_tens[fraction_length] ); |
|
352 } |
|
353 else |
|
354 { |
|
355 number *= power_tens[-fraction_length]; |
|
356 |
|
357 if ( number > 0x7FFFL ) |
|
358 goto Exit; |
|
359 |
|
360 result = number << 16; |
|
361 } |
|
362 } |
|
363 |
|
364 if ( sign ) |
|
365 result = -result; |
|
366 |
|
367 Exit: |
|
368 return result; |
|
369 } |
|
370 |
|
371 |
|
372 /* read a number, either integer or real */ |
|
373 static FT_Long |
|
374 cff_parse_num( FT_Byte** d ) |
|
375 { |
|
376 return **d == 30 ? ( cff_parse_real( d[0], d[1], 0, NULL ) >> 16 ) |
|
377 : cff_parse_integer( d[0], d[1] ); |
|
378 } |
|
379 |
|
380 |
|
381 /* read a floating point number, either integer or real */ |
|
382 static FT_Fixed |
|
383 cff_parse_fixed( FT_Byte** d ) |
|
384 { |
|
385 return **d == 30 ? cff_parse_real( d[0], d[1], 0, NULL ) |
|
386 : cff_parse_integer( d[0], d[1] ) << 16; |
|
387 } |
|
388 |
|
389 |
|
390 /* read a floating point number, either integer or real, */ |
|
391 /* but return `10^scaling' times the number read in */ |
|
392 static FT_Fixed |
|
393 cff_parse_fixed_scaled( FT_Byte** d, |
|
394 FT_Long scaling ) |
|
395 { |
|
396 return **d == 30 ? cff_parse_real( d[0], d[1], scaling, NULL ) |
|
397 : ( cff_parse_integer( d[0], d[1] ) * |
|
398 power_tens[scaling] ) << 16; |
|
399 } |
|
400 |
|
401 |
|
402 /* read a floating point number, either integer or real, */ |
|
403 /* and return it as precise as possible -- `scaling' returns */ |
|
404 /* the scaling factor (as a power of 10) */ |
|
405 static FT_Fixed |
|
406 cff_parse_fixed_dynamic( FT_Byte** d, |
|
407 FT_Long* scaling ) |
|
408 { |
|
409 FT_ASSERT( scaling ); |
|
410 |
|
411 if ( **d == 30 ) |
|
412 return cff_parse_real( d[0], d[1], 0, scaling ); |
|
413 else |
|
414 { |
|
415 FT_Long number; |
|
416 FT_Int integer_length; |
|
417 |
|
418 |
|
419 number = cff_parse_integer( d[0], d[1] ); |
|
420 |
|
421 if ( number > 0x7FFFL ) |
|
422 { |
|
423 for ( integer_length = 5; integer_length < 10; integer_length++ ) |
|
424 if ( number < power_tens[integer_length] ) |
|
425 break; |
|
426 |
|
427 if ( ( number / power_tens[integer_length - 5] ) > 0x7FFFL ) |
|
428 { |
|
429 *scaling = integer_length - 4; |
|
430 return FT_DivFix( number, power_tens[integer_length - 4] ); |
|
431 } |
|
432 else |
|
433 { |
|
434 *scaling = integer_length - 5; |
|
435 return FT_DivFix( number, power_tens[integer_length - 5] ); |
|
436 } |
|
437 } |
|
438 else |
|
439 { |
|
440 *scaling = 0; |
|
441 return number << 16; |
|
442 } |
|
443 } |
|
444 } |
|
445 |
|
446 |
|
447 static FT_Error |
|
448 cff_parse_font_matrix( CFF_Parser parser ) |
|
449 { |
|
450 CFF_FontRecDict dict = (CFF_FontRecDict)parser->object; |
|
451 FT_Matrix* matrix = &dict->font_matrix; |
|
452 FT_Vector* offset = &dict->font_offset; |
|
453 FT_ULong* upm = &dict->units_per_em; |
|
454 FT_Byte** data = parser->stack; |
|
455 FT_Error error = CFF_Err_Stack_Underflow; |
|
456 |
|
457 |
|
458 if ( parser->top >= parser->stack + 6 ) |
|
459 { |
|
460 FT_Long scaling; |
|
461 |
|
462 |
|
463 error = CFF_Err_Ok; |
|
464 |
|
465 /* We expect a well-formed font matrix, this is, the matrix elements */ |
|
466 /* `xx' and `yy' are of approximately the same magnitude. To avoid */ |
|
467 /* loss of precision, we use the magnitude of element `xx' to scale */ |
|
468 /* all other elements. The scaling factor is then contained in the */ |
|
469 /* `units_per_em' value. */ |
|
470 |
|
471 matrix->xx = cff_parse_fixed_dynamic( data++, &scaling ); |
|
472 |
|
473 scaling = -scaling; |
|
474 |
|
475 if ( scaling < 0 || scaling > 9 ) |
|
476 { |
|
477 /* Return default matrix in case of unlikely values. */ |
|
478 matrix->xx = 0x10000L; |
|
479 matrix->yx = 0; |
|
480 matrix->yx = 0; |
|
481 matrix->yy = 0x10000L; |
|
482 offset->x = 0; |
|
483 offset->y = 0; |
|
484 *upm = 1; |
|
485 |
|
486 goto Exit; |
|
487 } |
|
488 |
|
489 matrix->yx = cff_parse_fixed_scaled( data++, scaling ); |
|
490 matrix->xy = cff_parse_fixed_scaled( data++, scaling ); |
|
491 matrix->yy = cff_parse_fixed_scaled( data++, scaling ); |
|
492 offset->x = cff_parse_fixed_scaled( data++, scaling ); |
|
493 offset->y = cff_parse_fixed_scaled( data, scaling ); |
|
494 |
|
495 *upm = power_tens[scaling]; |
|
496 } |
|
497 |
|
498 Exit: |
|
499 return error; |
|
500 } |
|
501 |
|
502 |
|
503 static FT_Error |
|
504 cff_parse_font_bbox( CFF_Parser parser ) |
|
505 { |
|
506 CFF_FontRecDict dict = (CFF_FontRecDict)parser->object; |
|
507 FT_BBox* bbox = &dict->font_bbox; |
|
508 FT_Byte** data = parser->stack; |
|
509 FT_Error error; |
|
510 |
|
511 |
|
512 error = CFF_Err_Stack_Underflow; |
|
513 |
|
514 if ( parser->top >= parser->stack + 4 ) |
|
515 { |
|
516 bbox->xMin = FT_RoundFix( cff_parse_fixed( data++ ) ); |
|
517 bbox->yMin = FT_RoundFix( cff_parse_fixed( data++ ) ); |
|
518 bbox->xMax = FT_RoundFix( cff_parse_fixed( data++ ) ); |
|
519 bbox->yMax = FT_RoundFix( cff_parse_fixed( data ) ); |
|
520 error = CFF_Err_Ok; |
|
521 } |
|
522 |
|
523 return error; |
|
524 } |
|
525 |
|
526 |
|
527 static FT_Error |
|
528 cff_parse_private_dict( CFF_Parser parser ) |
|
529 { |
|
530 CFF_FontRecDict dict = (CFF_FontRecDict)parser->object; |
|
531 FT_Byte** data = parser->stack; |
|
532 FT_Error error; |
|
533 |
|
534 |
|
535 error = CFF_Err_Stack_Underflow; |
|
536 |
|
537 if ( parser->top >= parser->stack + 2 ) |
|
538 { |
|
539 dict->private_size = cff_parse_num( data++ ); |
|
540 dict->private_offset = cff_parse_num( data ); |
|
541 error = CFF_Err_Ok; |
|
542 } |
|
543 |
|
544 return error; |
|
545 } |
|
546 |
|
547 |
|
548 static FT_Error |
|
549 cff_parse_cid_ros( CFF_Parser parser ) |
|
550 { |
|
551 CFF_FontRecDict dict = (CFF_FontRecDict)parser->object; |
|
552 FT_Byte** data = parser->stack; |
|
553 FT_Error error; |
|
554 |
|
555 |
|
556 error = CFF_Err_Stack_Underflow; |
|
557 |
|
558 if ( parser->top >= parser->stack + 3 ) |
|
559 { |
|
560 dict->cid_registry = (FT_UInt)cff_parse_num ( data++ ); |
|
561 dict->cid_ordering = (FT_UInt)cff_parse_num ( data++ ); |
|
562 if ( **data == 30 ) |
|
563 FT_TRACE1(( "cff_parse_cid_ros: real supplement is rounded\n" )); |
|
564 dict->cid_supplement = cff_parse_num( data ); |
|
565 if ( dict->cid_supplement < 0 ) |
|
566 FT_TRACE1(( "cff_parse_cid_ros: negative supplement %d is found\n", |
|
567 dict->cid_supplement )); |
|
568 error = CFF_Err_Ok; |
|
569 } |
|
570 |
|
571 return error; |
|
572 } |
|
573 |
|
574 |
|
575 #define CFF_FIELD_NUM( code, name ) \ |
|
576 CFF_FIELD( code, name, cff_kind_num ) |
|
577 #define CFF_FIELD_FIXED( code, name ) \ |
|
578 CFF_FIELD( code, name, cff_kind_fixed ) |
|
579 #define CFF_FIELD_FIXED_1000( code, name ) \ |
|
580 CFF_FIELD( code, name, cff_kind_fixed_thousand ) |
|
581 #define CFF_FIELD_STRING( code, name ) \ |
|
582 CFF_FIELD( code, name, cff_kind_string ) |
|
583 #define CFF_FIELD_BOOL( code, name ) \ |
|
584 CFF_FIELD( code, name, cff_kind_bool ) |
|
585 #define CFF_FIELD_DELTA( code, name, max ) \ |
|
586 CFF_FIELD( code, name, cff_kind_delta ) |
|
587 |
|
588 #define CFFCODE_TOPDICT 0x1000 |
|
589 #define CFFCODE_PRIVATE 0x2000 |
|
590 |
|
591 #ifndef FT_CONFIG_OPTION_PIC |
|
592 |
|
593 #define CFF_FIELD_CALLBACK( code, name ) \ |
|
594 { \ |
|
595 cff_kind_callback, \ |
|
596 code | CFFCODE, \ |
|
597 0, 0, \ |
|
598 cff_parse_ ## name, \ |
|
599 0, 0 \ |
|
600 }, |
|
601 |
|
602 #undef CFF_FIELD |
|
603 #define CFF_FIELD( code, name, kind ) \ |
|
604 { \ |
|
605 kind, \ |
|
606 code | CFFCODE, \ |
|
607 FT_FIELD_OFFSET( name ), \ |
|
608 FT_FIELD_SIZE( name ), \ |
|
609 0, 0, 0 \ |
|
610 }, |
|
611 |
|
612 #undef CFF_FIELD_DELTA |
|
613 #define CFF_FIELD_DELTA( code, name, max ) \ |
|
614 { \ |
|
615 cff_kind_delta, \ |
|
616 code | CFFCODE, \ |
|
617 FT_FIELD_OFFSET( name ), \ |
|
618 FT_FIELD_SIZE_DELTA( name ), \ |
|
619 0, \ |
|
620 max, \ |
|
621 FT_FIELD_OFFSET( num_ ## name ) \ |
|
622 }, |
|
623 |
|
624 static const CFF_Field_Handler cff_field_handlers[] = |
|
625 { |
|
626 |
|
627 #include "cfftoken.h" |
|
628 |
|
629 { 0, 0, 0, 0, 0, 0, 0 } |
|
630 }; |
|
631 |
|
632 |
|
633 #else /* FT_CONFIG_OPTION_PIC */ |
|
634 |
|
635 void FT_Destroy_Class_cff_field_handlers(FT_Library library, CFF_Field_Handler* clazz) |
|
636 { |
|
637 FT_Memory memory = library->memory; |
|
638 if ( clazz ) |
|
639 FT_FREE( clazz ); |
|
640 } |
|
641 |
|
642 FT_Error FT_Create_Class_cff_field_handlers(FT_Library library, CFF_Field_Handler** output_class) |
|
643 { |
|
644 CFF_Field_Handler* clazz; |
|
645 FT_Error error; |
|
646 FT_Memory memory = library->memory; |
|
647 int i=0; |
|
648 |
|
649 #undef CFF_FIELD |
|
650 #undef CFF_FIELD_DELTA |
|
651 #undef CFF_FIELD_CALLBACK |
|
652 #define CFF_FIELD_CALLBACK( code, name ) i++; |
|
653 #define CFF_FIELD( code, name, kind ) i++; |
|
654 #define CFF_FIELD_DELTA( code, name, max ) i++; |
|
655 |
|
656 #include "cfftoken.h" |
|
657 i++;/*{ 0, 0, 0, 0, 0, 0, 0 }*/ |
|
658 |
|
659 if ( FT_ALLOC( clazz, sizeof(CFF_Field_Handler)*i ) ) |
|
660 return error; |
|
661 |
|
662 i=0; |
|
663 #undef CFF_FIELD |
|
664 #undef CFF_FIELD_DELTA |
|
665 #undef CFF_FIELD_CALLBACK |
|
666 |
|
667 #define CFF_FIELD_CALLBACK( code_, name_ ) \ |
|
668 clazz[i].kind = cff_kind_callback; \ |
|
669 clazz[i].code = code_ | CFFCODE; \ |
|
670 clazz[i].offset = 0; \ |
|
671 clazz[i].size = 0; \ |
|
672 clazz[i].reader = cff_parse_ ## name_; \ |
|
673 clazz[i].array_max = 0; \ |
|
674 clazz[i].count_offset = 0; \ |
|
675 i++; |
|
676 |
|
677 #undef CFF_FIELD |
|
678 #define CFF_FIELD( code_, name_, kind_ ) \ |
|
679 clazz[i].kind = kind_; \ |
|
680 clazz[i].code = code_ | CFFCODE; \ |
|
681 clazz[i].offset = FT_FIELD_OFFSET( name_ ); \ |
|
682 clazz[i].size = FT_FIELD_SIZE( name_ ); \ |
|
683 clazz[i].reader = 0; \ |
|
684 clazz[i].array_max = 0; \ |
|
685 clazz[i].count_offset = 0; \ |
|
686 i++; \ |
|
687 |
|
688 #undef CFF_FIELD_DELTA |
|
689 #define CFF_FIELD_DELTA( code_, name_, max_ ) \ |
|
690 clazz[i].kind = cff_kind_delta; \ |
|
691 clazz[i].code = code_ | CFFCODE; \ |
|
692 clazz[i].offset = FT_FIELD_OFFSET( name_ ); \ |
|
693 clazz[i].size = FT_FIELD_SIZE_DELTA( name_ ); \ |
|
694 clazz[i].reader = 0; \ |
|
695 clazz[i].array_max = max_; \ |
|
696 clazz[i].count_offset = FT_FIELD_OFFSET( num_ ## name_ ); \ |
|
697 i++; |
|
698 |
|
699 #include "cfftoken.h" |
|
700 |
|
701 clazz[i].kind = 0; |
|
702 clazz[i].code = 0; |
|
703 clazz[i].offset = 0; |
|
704 clazz[i].size = 0; |
|
705 clazz[i].reader = 0; |
|
706 clazz[i].array_max = 0; |
|
707 clazz[i].count_offset = 0; |
|
708 |
|
709 *output_class = clazz; |
|
710 return CFF_Err_Ok; |
|
711 } |
|
712 |
|
713 |
|
714 #endif /* FT_CONFIG_OPTION_PIC */ |
|
715 |
|
716 |
|
717 FT_LOCAL_DEF( FT_Error ) |
|
718 cff_parser_run( CFF_Parser parser, |
|
719 FT_Byte* start, |
|
720 FT_Byte* limit ) |
|
721 { |
|
722 FT_Byte* p = start; |
|
723 FT_Error error = CFF_Err_Ok; |
|
724 FT_Library library = parser->library; |
|
725 FT_UNUSED(library); |
|
726 |
|
727 |
|
728 parser->top = parser->stack; |
|
729 parser->start = start; |
|
730 parser->limit = limit; |
|
731 parser->cursor = start; |
|
732 |
|
733 while ( p < limit ) |
|
734 { |
|
735 FT_UInt v = *p; |
|
736 |
|
737 |
|
738 if ( v >= 27 && v != 31 ) |
|
739 { |
|
740 /* it's a number; we will push its position on the stack */ |
|
741 if ( parser->top - parser->stack >= CFF_MAX_STACK_DEPTH ) |
|
742 goto Stack_Overflow; |
|
743 |
|
744 *parser->top ++ = p; |
|
745 |
|
746 /* now, skip it */ |
|
747 if ( v == 30 ) |
|
748 { |
|
749 /* skip real number */ |
|
750 p++; |
|
751 for (;;) |
|
752 { |
|
753 /* An unterminated floating point number at the */ |
|
754 /* end of a dictionary is invalid but harmless. */ |
|
755 if ( p >= limit ) |
|
756 goto Exit; |
|
757 v = p[0] >> 4; |
|
758 if ( v == 15 ) |
|
759 break; |
|
760 v = p[0] & 0xF; |
|
761 if ( v == 15 ) |
|
762 break; |
|
763 p++; |
|
764 } |
|
765 } |
|
766 else if ( v == 28 ) |
|
767 p += 2; |
|
768 else if ( v == 29 ) |
|
769 p += 4; |
|
770 else if ( v > 246 ) |
|
771 p += 1; |
|
772 } |
|
773 else |
|
774 { |
|
775 /* This is not a number, hence it's an operator. Compute its code */ |
|
776 /* and look for it in our current list. */ |
|
777 |
|
778 FT_UInt code; |
|
779 FT_UInt num_args = (FT_UInt) |
|
780 ( parser->top - parser->stack ); |
|
781 const CFF_Field_Handler* field; |
|
782 |
|
783 |
|
784 *parser->top = p; |
|
785 code = v; |
|
786 if ( v == 12 ) |
|
787 { |
|
788 /* two byte operator */ |
|
789 p++; |
|
790 if ( p >= limit ) |
|
791 goto Syntax_Error; |
|
792 |
|
793 code = 0x100 | p[0]; |
|
794 } |
|
795 code = code | parser->object_code; |
|
796 |
|
797 for ( field = FT_CFF_FIELD_HANDLERS_GET; field->kind; field++ ) |
|
798 { |
|
799 if ( field->code == (FT_Int)code ) |
|
800 { |
|
801 /* we found our field's handler; read it */ |
|
802 FT_Long val; |
|
803 FT_Byte* q = (FT_Byte*)parser->object + field->offset; |
|
804 |
|
805 |
|
806 /* check that we have enough arguments -- except for */ |
|
807 /* delta encoded arrays, which can be empty */ |
|
808 if ( field->kind != cff_kind_delta && num_args < 1 ) |
|
809 goto Stack_Underflow; |
|
810 |
|
811 switch ( field->kind ) |
|
812 { |
|
813 case cff_kind_bool: |
|
814 case cff_kind_string: |
|
815 case cff_kind_num: |
|
816 val = cff_parse_num( parser->stack ); |
|
817 goto Store_Number; |
|
818 |
|
819 case cff_kind_fixed: |
|
820 val = cff_parse_fixed( parser->stack ); |
|
821 goto Store_Number; |
|
822 |
|
823 case cff_kind_fixed_thousand: |
|
824 val = cff_parse_fixed_scaled( parser->stack, 3 ); |
|
825 |
|
826 Store_Number: |
|
827 switch ( field->size ) |
|
828 { |
|
829 case (8 / FT_CHAR_BIT): |
|
830 *(FT_Byte*)q = (FT_Byte)val; |
|
831 break; |
|
832 |
|
833 case (16 / FT_CHAR_BIT): |
|
834 *(FT_Short*)q = (FT_Short)val; |
|
835 break; |
|
836 |
|
837 case (32 / FT_CHAR_BIT): |
|
838 *(FT_Int32*)q = (FT_Int)val; |
|
839 break; |
|
840 |
|
841 default: /* for 64-bit systems */ |
|
842 *(FT_Long*)q = val; |
|
843 } |
|
844 break; |
|
845 |
|
846 case cff_kind_delta: |
|
847 { |
|
848 FT_Byte* qcount = (FT_Byte*)parser->object + |
|
849 field->count_offset; |
|
850 |
|
851 FT_Byte** data = parser->stack; |
|
852 |
|
853 |
|
854 if ( num_args > field->array_max ) |
|
855 num_args = field->array_max; |
|
856 |
|
857 /* store count */ |
|
858 *qcount = (FT_Byte)num_args; |
|
859 |
|
860 val = 0; |
|
861 while ( num_args > 0 ) |
|
862 { |
|
863 val += cff_parse_num( data++ ); |
|
864 switch ( field->size ) |
|
865 { |
|
866 case (8 / FT_CHAR_BIT): |
|
867 *(FT_Byte*)q = (FT_Byte)val; |
|
868 break; |
|
869 |
|
870 case (16 / FT_CHAR_BIT): |
|
871 *(FT_Short*)q = (FT_Short)val; |
|
872 break; |
|
873 |
|
874 case (32 / FT_CHAR_BIT): |
|
875 *(FT_Int32*)q = (FT_Int)val; |
|
876 break; |
|
877 |
|
878 default: /* for 64-bit systems */ |
|
879 *(FT_Long*)q = val; |
|
880 } |
|
881 |
|
882 q += field->size; |
|
883 num_args--; |
|
884 } |
|
885 } |
|
886 break; |
|
887 |
|
888 default: /* callback */ |
|
889 error = field->reader( parser ); |
|
890 if ( error ) |
|
891 goto Exit; |
|
892 } |
|
893 goto Found; |
|
894 } |
|
895 } |
|
896 |
|
897 /* this is an unknown operator, or it is unsupported; */ |
|
898 /* we will ignore it for now. */ |
|
899 |
|
900 Found: |
|
901 /* clear stack */ |
|
902 parser->top = parser->stack; |
|
903 } |
|
904 p++; |
|
905 } |
|
906 |
|
907 Exit: |
|
908 return error; |
|
909 |
|
910 Stack_Overflow: |
|
911 error = CFF_Err_Invalid_Argument; |
|
912 goto Exit; |
|
913 |
|
914 Stack_Underflow: |
|
915 error = CFF_Err_Invalid_Argument; |
|
916 goto Exit; |
|
917 |
|
918 Syntax_Error: |
|
919 error = CFF_Err_Invalid_Argument; |
|
920 goto Exit; |
|
921 } |
|
922 |
|
923 |
|
924 /* END */ |