diff -r 0135e64c6c66 -r c4fd2813b127 rust/integral-geometry/src/lib.rs --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/rust/integral-geometry/src/lib.rs Wed Jul 31 23:14:27 2019 +0200 @@ -0,0 +1,979 @@ +use fpnum::{fp, integral_sqrt, FPNum, FPPoint}; +use std::{ + cmp::{max, min}, + ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, RangeInclusive, Sub, SubAssign}, +}; + +#[derive(PartialEq, Eq, Clone, Copy, Debug)] +pub struct Point { + pub x: i32, + pub y: i32, +} + +impl Point { + pub const ZERO: Self = Self::new(0, 0); + + #[inline] + pub const fn new(x: i32, y: i32) -> Self { + Self { x, y } + } + + #[inline] + pub const fn diag(v: i32) -> Self { + Self::new(v, v) + } + + #[inline] + pub fn signum(self) -> Self { + Self::new(self.x.signum(), self.y.signum()) + } + + #[inline] + pub fn abs(self) -> Self { + Self::new(self.x.abs(), self.y.abs()) + } + + #[inline] + pub const fn dot(self, other: Point) -> i32 { + self.x * other.x + self.y * other.y + } + + #[inline] + pub fn max_norm(self) -> i32 { + std::cmp::max(self.x.abs(), self.y.abs()) + } + + #[inline] + pub fn integral_norm(self) -> u32 { + let sqr = (self.x as u64).pow(2) + (self.y as u64).pow(2); + integral_sqrt(sqr) as u32 + } + + #[inline] + pub const fn transform(self, matrix: &[i32; 4]) -> Self { + Point::new( + matrix[0] * self.x + matrix[1] * self.y, + matrix[2] * self.x + matrix[3] * self.y, + ) + } + + #[inline] + pub const fn rotate90(self) -> Self { + Point::new(self.y, -self.x) + } + + #[inline] + pub const fn cross(self, other: Point) -> i32 { + self.dot(other.rotate90()) + } + + #[inline] + pub fn clamp(self, rect: &Rect) -> Point { + Point::new(rect.x_range().clamp(self.x), rect.y_range().clamp(self.y)) + } + + #[inline] + pub const fn line_to(self, end: Point) -> Line { + Line::new(self, end) + } + + #[inline] + pub const fn ray_with_dir(self, direction: Point) -> Ray { + Ray::new(self, direction) + } + + #[inline] + pub const fn tangent_mul(self, x: i32) -> i32 { + x * self.y / self.x + } + + #[inline] + pub const fn cotangent_mul(self, y: i32) -> i32 { + y * self.x / self.y + } + + #[inline] + pub fn to_fppoint(self) -> FPPoint { + FPPoint::new(self.x.into(), self.y.into()) + } + + #[inline] + pub fn from_fppoint(p: &FPPoint) -> Self { + Self::new(p.x().round(), p.y().round()) + } +} + +#[derive(PartialEq, Eq, Clone, Copy, Debug)] +pub struct Size { + pub width: usize, + pub height: usize, +} + +impl Size { + pub const EMPTY: Self = Self::square(0); + + #[inline] + pub const fn new(width: usize, height: usize) -> Self { + Self { width, height } + } + + #[inline] + pub const fn square(size: usize) -> Self { + Self { + width: size, + height: size, + } + } + + #[inline] + pub const fn area(&self) -> usize { + self.width * self.height + } + + #[inline] + pub const fn linear_index(&self, x: usize, y: usize) -> usize { + y * self.width + x + } + + #[inline] + pub fn is_power_of_two(&self) -> bool { + self.width.is_power_of_two() && self.height.is_power_of_two() + } + + #[inline] + pub fn next_power_of_two(&self) -> Self { + Self { + width: self.width.next_power_of_two(), + height: self.height.next_power_of_two(), + } + } + + #[inline] + pub const fn transpose(&self) -> Self { + Self::new(self.height, self.width) + } + + #[inline] + pub fn to_mask(&self) -> SizeMask { + SizeMask::new(*self) + } + + #[inline] + pub fn to_square(&self) -> Self { + Self::square(max(self.width, self.height)) + } + + pub fn to_grid_index(&self) -> GridIndex { + GridIndex::new(*self) + } + + #[inline] + pub fn contains(&self, other: Self) -> bool { + self.width >= other.width && self.height >= other.height + } +} + +#[derive(PartialEq, Eq, Clone, Copy, Debug)] +pub struct SizeMask { + size: Size, +} + +impl SizeMask { + #[inline] + pub fn new(size: Size) -> Self { + debug_assert!(size.is_power_of_two()); + let size = Size { + width: !(size.width - 1), + height: !(size.height - 1), + }; + Self { size } + } + + #[inline] + pub fn contains_x>(&self, x: T) -> bool { + (self.size.width & x.into()) == 0 + } + + #[inline] + pub fn contains_y>(&self, y: T) -> bool { + (self.size.height & y.into()) == 0 + } + + #[inline] + pub fn contains(&self, point: Point) -> bool { + self.contains_x(point.x as usize) && self.contains_y(point.y as usize) + } +} + +pub struct GridIndex { + shift: Point, +} + +impl GridIndex { + pub fn new(size: Size) -> Self { + assert!(size.is_power_of_two()); + let shift = Point::new( + size.width.trailing_zeros() as i32, + size.height.trailing_zeros() as i32, + ); + Self { shift } + } + + pub fn map(&self, position: Point) -> Point { + Point::new(position.x >> self.shift.x, position.y >> self.shift.y) + } +} + +macro_rules! bin_op_impl { + ($op: ty, $name: tt) => { + impl $op for Point { + type Output = Self; + + #[inline] + fn $name(self, rhs: Self) -> Self::Output { + Self::new(self.x.$name(rhs.x), self.y.$name(rhs.y)) + } + } + }; +} + +macro_rules! scalar_bin_op_impl { + ($($op: tt)::+, $name: tt) => { + impl $($op)::+ for Point { + type Output = Self; + + #[inline] + fn $name(self, rhs: i32) -> Self::Output { + Self::new(self.x.$name(rhs), self.y.$name(rhs)) + } + } + }; +} + +macro_rules! bin_assign_op_impl { + ($op: ty, $name: tt) => { + impl $op for Point { + #[inline] + fn $name(&mut self, rhs: Self) { + self.x.$name(rhs.x); + self.y.$name(rhs.y); + } + } + }; +} + +macro_rules! fp_scalar_bin_op_impl { + ($($op: tt)::+, $name: tt) => { + impl $($op)::+ for Point { + type Output = FPPoint; + + #[inline] + fn $name(self, rhs: FPNum) -> Self::Output { + FPPoint::new(rhs.$name(self.x), rhs.$name(self.y)) + } + } + }; +} + +macro_rules! left_fp_scalar_bin_op_impl { + ($($op: tt)::+, $name: tt) => { + impl $($op)::+ for FPNum { + type Output = FPPoint; + + #[inline] + fn $name(self, rhs: Point) -> Self::Output { + FPPoint::new(self.$name(rhs.x), self.$name(rhs.y)) + } + } + }; +} + +bin_op_impl!(Add, add); +bin_op_impl!(Sub, sub); +bin_op_impl!(Mul, mul); +bin_op_impl!(Div, div); +scalar_bin_op_impl!(Mul, mul); +scalar_bin_op_impl!(Div, div); +fp_scalar_bin_op_impl!(Mul, mul); +fp_scalar_bin_op_impl!(Div, div); +left_fp_scalar_bin_op_impl!(Mul, mul); +left_fp_scalar_bin_op_impl!(Div, div); +bin_assign_op_impl!(AddAssign, add_assign); +bin_assign_op_impl!(SubAssign, sub_assign); +bin_assign_op_impl!(MulAssign, mul_assign); +bin_assign_op_impl!(DivAssign, div_assign); + +#[derive(PartialEq, Eq, Clone, Copy, Debug)] +pub struct Rect { + top_left: Point, + bottom_right: Point, +} + +impl Rect { + pub const EMPTY: Self = Self { + top_left: Point::ZERO, + bottom_right: Point::diag(-1), + }; + + #[inline] + pub fn new(top_left: Point, bottom_right: Point) -> Self { + debug_assert!(top_left.x <= bottom_right.x + 1); + debug_assert!(top_left.y <= bottom_right.y + 1); + Self { + top_left, + bottom_right, + } + } + + pub fn from_box(left: i32, right: i32, top: i32, bottom: i32) -> Self { + Self::new(Point::new(left, top), Point::new(right, bottom)) + } + + pub fn from_size(top_left: Point, size: Size) -> Self { + Self::new( + top_left, + top_left + Point::new(size.width as i32 - 1, size.height as i32 - 1), + ) + } + + pub fn from_size_coords(x: i32, y: i32, width: usize, height: usize) -> Self { + Self::from_size(Point::new(x, y), Size::new(width, height)) + } + + pub fn at_origin(size: Size) -> Self { + Self::from_size(Point::ZERO, size) + } + + #[inline] + pub const fn width(&self) -> usize { + (self.right() - self.left() + 1) as usize + } + + #[inline] + pub const fn height(&self) -> usize { + (self.bottom() - self.top() + 1) as usize + } + + #[inline] + pub const fn size(&self) -> Size { + Size::new(self.width(), self.height()) + } + + #[inline] + pub const fn area(&self) -> usize { + self.size().area() + } + + #[inline] + pub const fn left(&self) -> i32 { + self.top_left().x + } + + #[inline] + pub const fn top(&self) -> i32 { + self.top_left().y + } + + #[inline] + pub const fn right(&self) -> i32 { + self.bottom_right().x + } + + #[inline] + pub const fn bottom(&self) -> i32 { + self.bottom_right().y + } + + #[inline] + pub const fn top_left(&self) -> Point { + self.top_left + } + + #[inline] + pub const fn bottom_right(&self) -> Point { + self.bottom_right + } + + #[inline] + pub fn center(&self) -> Point { + (self.top_left() + self.bottom_right()) / 2 + } + + #[inline] + pub fn with_margin(&self, margin: i32) -> Self { + let offset = Point::diag(margin); + Self::new(self.top_left() + offset, self.bottom_right() - offset) + } + + #[inline] + pub fn x_range(&self) -> RangeInclusive { + self.left()..=self.right() + } + + #[inline] + pub fn y_range(&self) -> RangeInclusive { + self.top()..=self.bottom() + } + + #[inline] + pub fn contains(&self, point: Point) -> bool { + self.x_range().contains(&point.x) && self.y_range().contains(&point.y) + } + + #[inline] + pub fn contains_inside(&self, point: Point) -> bool { + point.x > self.left() + && point.x < self.right() + && point.y > self.top() + && point.y < self.bottom() + } + + #[inline] + pub fn contains_rect(&self, other: &Self) -> bool { + self.contains(other.top_left()) && self.contains(other.bottom_right()) + } + + #[inline] + pub fn intersects(&self, other: &Rect) -> bool { + self.left() <= other.right() + && self.right() >= other.left() + && self.top() <= other.bottom() + && self.bottom() >= other.top() + } + + #[inline] + pub fn split_at(&self, point: Point) -> [Rect; 4] { + assert!(self.contains_inside(point)); + [ + Self::from_box(self.left(), point.x, self.top(), point.y), + Self::from_box(point.x, self.right(), self.top(), point.y), + Self::from_box(point.x, self.right(), point.y, self.bottom()), + Self::from_box(self.left(), point.x, point.y, self.bottom()), + ] + } + + #[inline] + pub fn with_margins(&self, left: i32, right: i32, top: i32, bottom: i32) -> Self { + Self::from_box( + self.left() - left, + self.right() + right, + self.top() - top, + self.bottom() + bottom, + ) + } + + #[inline] + pub fn quotient(self, x: usize, y: usize) -> Point { + self.top_left() + Point::new((x % self.width()) as i32, (y % self.height()) as i32) + } +} + +trait RangeClamp { + fn clamp(&self, value: T) -> T; +} + +impl RangeClamp for RangeInclusive { + fn clamp(&self, value: T) -> T { + if value < *self.start() { + *self.start() + } else if value > *self.end() { + *self.end() + } else { + value + } + } +} + +pub struct Polygon { + vertices: Vec, +} + +impl Polygon { + pub fn new(vertices: &[Point]) -> Self { + let mut v = Vec::with_capacity(vertices.len() + 1); + v.extend_from_slice(vertices); + if !v.is_empty() { + let start = v[0]; + v.push(start); + } + Self { vertices: v } + } + + pub fn edges_count(&self) -> usize { + self.vertices.len().saturating_sub(1) + } + + pub fn get_edge(&self, index: usize) -> Line { + Line::new(self.vertices[index], self.vertices[index + 1]) + } + + pub fn split_edge(&mut self, edge_index: usize, vertex: Point) { + self.vertices.insert(edge_index + 1, vertex); + } + + pub fn iter<'a>(&'a self) -> impl Iterator + 'a { + (&self.vertices[..self.edges_count()]).iter() + } + + pub fn iter_mut<'a>(&'a mut self) -> impl Iterator + 'a { + let edges_count = self.edges_count(); + let start = self.vertices.as_mut_ptr(); + let end = unsafe { start.add(edges_count) }; + PolygonPointsIteratorMut { + source: self, + start, + end, + } + } + + fn force_close(&mut self) { + if !self.vertices.is_empty() { + let edges_count = self.edges_count(); + self.vertices[edges_count] = self.vertices[0]; + } + } + + pub fn iter_edges<'a>(&'a self) -> impl Iterator + 'a { + (&self.vertices[0..self.edges_count()]) + .iter() + .zip(&self.vertices[1..]) + .map(|(s, e)| Line::new(*s, *e)) + } + + pub fn bezierize(&mut self, segments_number: u32) { + fn calc_point(p1: Point, p2: Point, p3: Point) -> FPPoint { + let diff13 = (p1 - p3).to_fppoint(); + let diff13_norm = diff13.distance(); + + if diff13_norm.is_zero() { + diff13 + } else { + let diff12_norm = (p1 - p2).to_fppoint().distance(); + let diff23_norm = (p2 - p3).to_fppoint().distance(); + let min_distance = min(diff13_norm, min(diff12_norm, diff23_norm)); + + diff13 * min_distance / diff13_norm / 3 + } + } + + if self.vertices.len() < 4 { + return; + } + + let delta = fp!(1 / segments_number); + let mut bezierized_vertices = Vec::new(); + let mut pi = 0; + let mut i = 1; + let mut ni = 2; + let mut right_point = calc_point(self.vertices[pi], self.vertices[i], self.vertices[ni]); + let mut left_point; + + pi += 1; + while pi != 0 { + pi = i; + i = ni; + ni += 1; + if ni >= self.vertices.len() { + ni = 0; + } + + left_point = right_point; + right_point = calc_point(self.vertices[pi], self.vertices[i], self.vertices[ni]); + + bezierized_vertices.extend(BezierCurveSegments::new( + Line::new(self.vertices[pi], self.vertices[i]), + left_point, + -right_point, + delta, + )); + } + + self.vertices = bezierized_vertices; + } +} + +struct PolygonPointsIteratorMut<'a> { + source: &'a mut Polygon, + start: *mut Point, + end: *mut Point, +} + +impl<'a> Iterator for PolygonPointsIteratorMut<'a> { + type Item = &'a mut Point; + + fn next(&mut self) -> Option<::Item> { + if self.start == self.end { + None + } else { + unsafe { + let result = &mut *self.start; + self.start = self.start.add(1); + Some(result) + } + } + } +} + +impl<'a> Drop for PolygonPointsIteratorMut<'a> { + fn drop(&mut self) { + self.source.force_close(); + } +} + +impl From> for Polygon { + fn from(mut v: Vec) -> Self { + if !v.is_empty() && v[0] != v[v.len() - 1] { + let start = v[0]; + v.push(start) + } + Self { vertices: v } + } +} + +#[derive(PartialEq, Eq, Clone, Copy, Debug)] +pub struct Ray { + pub start: Point, + pub direction: Point, +} + +impl Ray { + #[inline] + pub const fn new(start: Point, direction: Point) -> Ray { + Self { start, direction } + } + + #[inline] + pub const fn tangent_mul(&self, x: i32) -> i32 { + self.direction.tangent_mul(x) + } + + #[inline] + pub const fn cotangent_mul(&self, y: i32) -> i32 { + self.direction.cotangent_mul(y) + } + + #[inline] + pub fn orientation(&self, point: Point) -> i32 { + (point - self.start).cross(self.direction).signum() + } +} + +#[derive(PartialEq, Eq, Clone, Copy, Debug)] +pub struct Line { + pub start: Point, + pub end: Point, +} + +impl Line { + pub const ZERO: Self = Self::new(Point::ZERO, Point::ZERO); + + #[inline] + pub const fn new(start: Point, end: Point) -> Self { + Self { start, end } + } + + #[inline] + pub fn center(&self) -> Point { + (self.start + self.end) / 2 + } + + #[inline] + pub fn scaled_direction(&self) -> Point { + self.end - self.start + } + + #[inline] + pub fn scaled_normal(&self) -> Point { + self.scaled_direction().rotate90() + } + + #[inline] + pub fn to_ray(&self) -> Ray { + Ray::new(self.start, self.scaled_direction()) + } +} + +impl IntoIterator for Line { + type Item = Point; + type IntoIter = LinePoints; + + fn into_iter(self) -> Self::IntoIter { + LinePoints::new(self) + } +} + +pub struct LinePoints { + accumulator: Point, + direction: Point, + sign: Point, + current: Point, + total_steps: i32, + step: i32, +} + +impl LinePoints { + pub fn new(line: Line) -> Self { + let dir = line.end - line.start; + + Self { + accumulator: Point::ZERO, + direction: dir.abs(), + sign: dir.signum(), + current: line.start, + total_steps: dir.max_norm(), + step: 0, + } + } +} + +impl Iterator for LinePoints { + type Item = Point; + + fn next(&mut self) -> Option { + if self.step <= self.total_steps { + self.accumulator += self.direction; + + if self.accumulator.x > self.total_steps { + self.accumulator.x -= self.total_steps; + self.current.x += self.sign.x; + } + if self.accumulator.y > self.total_steps { + self.accumulator.y -= self.total_steps; + self.current.y += self.sign.y; + } + + self.step += 1; + + Some(self.current) + } else { + None + } + } +} + +pub struct ArcPoints { + point: Point, + step: i32, +} + +impl ArcPoints { + pub const fn new(radius: i32) -> Self { + Self { + point: Point::new(0, radius), + step: 3 - 2 * radius, + } + } +} + +impl Iterator for ArcPoints { + type Item = Point; + + fn next(&mut self) -> Option { + if self.point.x < self.point.y { + let result = self.point; + + if self.step < 0 { + self.step += self.point.x * 4 + 6; + } else { + self.step += (self.point.x - self.point.y) * 4 + 10; + self.point.y -= 1; + } + + self.point.x += 1; + + Some(result) + } else if self.point.x == self.point.y { + self.point.x += 1; + + Some(self.point) + } else { + None + } + } +} + +pub struct EquidistantPoints { + vector: Vec, +} + +impl EquidistantPoints { + pub fn new(vector: Point) -> Self { + Self { + vector: if vector.x == vector.y { + vec![ + Point::new(vector.x, vector.x), + Point::new(vector.x, -vector.x), + Point::new(-vector.x, -vector.x), + Point::new(-vector.x, vector.x), + ] + } else { + vec![ + Point::new(vector.x, vector.y), + Point::new(vector.x, -vector.y), + Point::new(-vector.x, -vector.y), + Point::new(-vector.x, vector.y), + Point::new(vector.y, vector.x), + Point::new(vector.y, -vector.x), + Point::new(-vector.y, -vector.x), + Point::new(-vector.y, vector.x), + ] + }, + } + } +} + +impl IntoIterator for EquidistantPoints { + type Item = Point; + type IntoIter = std::vec::IntoIter; + + fn into_iter(self) -> Self::IntoIter { + self.vector.into_iter() + } +} + +pub struct BezierCurveSegments { + segment: Line, + control_point1: FPPoint, + control_point2: FPPoint, + offset: FPNum, + max_offset: FPNum, + delta: FPNum, + have_finished: bool, +} + +impl BezierCurveSegments { + pub fn new(segment: Line, p1: FPPoint, p2: FPPoint, delta: FPNum) -> Self { + Self { + segment, + control_point1: segment.start.to_fppoint() - p1, + control_point2: segment.end.to_fppoint() - p2, + offset: fp!(0), + max_offset: fp!(4095 / 4096), + delta, + have_finished: false, + } + } +} + +impl Iterator for BezierCurveSegments { + type Item = Point; + + fn next(&mut self) -> Option { + if self.offset < self.max_offset { + let offset_sq = self.offset * self.offset; + let offset_cub = offset_sq * self.offset; + + let r1 = fp!(1) - self.offset * 3 + offset_sq * 3 - offset_cub; + let r2 = self.offset * 3 - offset_sq * 6 + offset_cub * 3; + let r3 = offset_sq * 3 - offset_cub * 3; + + let p = r1 * self.segment.start + + r2 * self.control_point1 + + r3 * self.control_point2 + + offset_cub * self.segment.end; + + self.offset += self.delta; + + Some(Point::from_fppoint(&p)) + } else if !self.have_finished { + self.have_finished = true; + + Some(self.segment.end) + } else { + None + } + } +} + +#[cfg(test)] +mod tests { + use super::*; + + fn get_points(coords: &[(i32, i32)]) -> Vec { + coords.iter().map(|(x, y)| Point::new(*x, *y)).collect() + } + + #[test] + fn line_basic() { + let line: Vec = Line::new(Point::new(0, 0), Point::new(3, 3)) + .into_iter() + .collect(); + let v = get_points(&[(0, 0), (1, 1), (2, 2), (3, 3)]); + + assert_eq!(line, v); + } + + #[test] + fn line_skewed() { + let line: Vec = Line::new(Point::new(0, 0), Point::new(5, -7)) + .into_iter() + .collect(); + let v = get_points(&[ + (0, 0), + (1, -1), + (2, -2), + (2, -3), + (3, -4), + (4, -5), + (4, -6), + (5, -7), + ]); + + assert_eq!(line, v); + } + + #[test] + fn equidistant_full() { + let n: Vec = EquidistantPoints::new(Point::new(1, 3)) + .into_iter() + .collect(); + let v = get_points(&[ + (1, 3), + (1, -3), + (-1, -3), + (-1, 3), + (3, 1), + (3, -1), + (-3, -1), + (-3, 1), + ]); + + assert_eq!(n, v); + } + + #[test] + fn equidistant_half() { + let n: Vec = EquidistantPoints::new(Point::new(2, 2)) + .into_iter() + .collect(); + let v = get_points(&[(2, 2), (2, -2), (-2, -2), (-2, 2)]); + + assert_eq!(n, v); + } + + #[test] + fn line() { + let l = Line::new(Point::new(1, 1), Point::new(5, 6)); + + assert_eq!(l.center(), Point::new(3, 3)); + } + + #[test] + fn rect() { + let r = Rect::from_box(10, 100, 0, 70); + + assert!(r.contains_inside(Point::new(99, 69))); + assert!(!r.contains_inside(Point::new(100, 70))); + + assert_eq!(r.top_left(), Point::new(10, 0)); + assert_eq!(r.with_margin(12), Rect::from_box(22, 88, 12, 58)); + } + + #[test] + fn fit() { + let r = Rect::from_box(10, 100, 0, 70); + + assert_eq!(Point::new(0, -10).clamp(&r), Point::new(10, 0)); + assert_eq!(Point::new(1000, 1000).clamp(&r), Point::new(100, 70)); + } +}