diff -r 1853628ae285 -r a65e9bcf0a03 misc/libphysfs/physfs.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/misc/libphysfs/physfs.h Fri Feb 22 05:43:56 2013 +0100 @@ -0,0 +1,3324 @@ +/** + * \file physfs.h + * + * Main header file for PhysicsFS. + */ + +/** + * \mainpage PhysicsFS + * + * The latest version of PhysicsFS can be found at: + * http://icculus.org/physfs/ + * + * PhysicsFS; a portable, flexible file i/o abstraction. + * + * This API gives you access to a system file system in ways superior to the + * stdio or system i/o calls. The brief benefits: + * + * - It's portable. + * - It's safe. No file access is permitted outside the specified dirs. + * - It's flexible. Archives (.ZIP files) can be used transparently as + * directory structures. + * + * This system is largely inspired by Quake 3's PK3 files and the related + * fs_* cvars. If you've ever tinkered with these, then this API will be + * familiar to you. + * + * With PhysicsFS, you have a single writing directory and multiple + * directories (the "search path") for reading. You can think of this as a + * filesystem within a filesystem. If (on Windows) you were to set the + * writing directory to "C:\MyGame\MyWritingDirectory", then no PHYSFS calls + * could touch anything above this directory, including the "C:\MyGame" and + * "C:\" directories. This prevents an application's internal scripting + * language from piddling over c:\\config.sys, for example. If you'd rather + * give PHYSFS full access to the system's REAL file system, set the writing + * dir to "C:\", but that's generally A Bad Thing for several reasons. + * + * Drive letters are hidden in PhysicsFS once you set up your initial paths. + * The search path creates a single, hierarchical directory structure. + * Not only does this lend itself well to general abstraction with archives, + * it also gives better support to operating systems like MacOS and Unix. + * Generally speaking, you shouldn't ever hardcode a drive letter; not only + * does this hurt portability to non-Microsoft OSes, but it limits your win32 + * users to a single drive, too. Use the PhysicsFS abstraction functions and + * allow user-defined configuration options, too. When opening a file, you + * specify it like it was on a Unix filesystem: if you want to write to + * "C:\MyGame\MyConfigFiles\game.cfg", then you might set the write dir to + * "C:\MyGame" and then open "MyConfigFiles/game.cfg". This gives an + * abstraction across all platforms. Specifying a file in this way is termed + * "platform-independent notation" in this documentation. Specifying a + * a filename in a form such as "C:\mydir\myfile" or + * "MacOS hard drive:My Directory:My File" is termed "platform-dependent + * notation". The only time you use platform-dependent notation is when + * setting up your write directory and search path; after that, all file + * access into those directories are done with platform-independent notation. + * + * All files opened for writing are opened in relation to the write directory, + * which is the root of the writable filesystem. When opening a file for + * reading, PhysicsFS goes through the search path. This is NOT the + * same thing as the PATH environment variable. An application using + * PhysicsFS specifies directories to be searched which may be actual + * directories, or archive files that contain files and subdirectories of + * their own. See the end of these docs for currently supported archive + * formats. + * + * Once the search path is defined, you may open files for reading. If you've + * got the following search path defined (to use a win32 example again): + * + * - C:\\mygame + * - C:\\mygame\\myuserfiles + * - D:\\mygamescdromdatafiles + * - C:\\mygame\\installeddatafiles.zip + * + * Then a call to PHYSFS_openRead("textfiles/myfile.txt") (note the directory + * separator, lack of drive letter, and lack of dir separator at the start of + * the string; this is platform-independent notation) will check for + * C:\\mygame\\textfiles\\myfile.txt, then + * C:\\mygame\\myuserfiles\\textfiles\\myfile.txt, then + * D:\\mygamescdromdatafiles\\textfiles\\myfile.txt, then, finally, for + * textfiles\\myfile.txt inside of C:\\mygame\\installeddatafiles.zip. + * Remember that most archive types and platform filesystems store their + * filenames in a case-sensitive manner, so you should be careful to specify + * it correctly. + * + * Files opened through PhysicsFS may NOT contain "." or ".." or ":" as dir + * elements. Not only are these meaningless on MacOS Classic and/or Unix, + * they are a security hole. Also, symbolic links (which can be found in + * some archive types and directly in the filesystem on Unix platforms) are + * NOT followed until you call PHYSFS_permitSymbolicLinks(). That's left to + * your own discretion, as following a symlink can allow for access outside + * the write dir and search paths. For portability, there is no mechanism for + * creating new symlinks in PhysicsFS. + * + * The write dir is not included in the search path unless you specifically + * add it. While you CAN change the write dir as many times as you like, + * you should probably set it once and stick to it. Remember that your + * program will not have permission to write in every directory on Unix and + * NT systems. + * + * All files are opened in binary mode; there is no endline conversion for + * textfiles. Other than that, PhysicsFS has some convenience functions for + * platform-independence. There is a function to tell you the current + * platform's dir separator ("\\" on windows, "/" on Unix, ":" on MacOS), + * which is needed only to set up your search/write paths. There is a + * function to tell you what CD-ROM drives contain accessible discs, and a + * function to recommend a good search path, etc. + * + * A recommended order for the search path is the write dir, then the base dir, + * then the cdrom dir, then any archives discovered. Quake 3 does something + * like this, but moves the archives to the start of the search path. Build + * Engine games, like Duke Nukem 3D and Blood, place the archives last, and + * use the base dir for both searching and writing. There is a helper + * function (PHYSFS_setSaneConfig()) that puts together a basic configuration + * for you, based on a few parameters. Also see the comments on + * PHYSFS_getBaseDir(), and PHYSFS_getPrefDir() for info on what those + * are and how they can help you determine an optimal search path. + * + * PhysicsFS 2.0 adds the concept of "mounting" archives to arbitrary points + * in the search path. If a zipfile contains "maps/level.map" and you mount + * that archive at "mods/mymod", then you would have to open + * "mods/mymod/maps/level.map" to access the file, even though "mods/mymod" + * isn't actually specified in the .zip file. Unlike the Unix mentality of + * mounting a filesystem, "mods/mymod" doesn't actually have to exist when + * mounting the zipfile. It's a "virtual" directory. The mounting mechanism + * allows the developer to seperate archives in the tree and avoid trampling + * over files when added new archives, such as including mod support in a + * game...keeping external content on a tight leash in this manner can be of + * utmost importance to some applications. + * + * PhysicsFS is mostly thread safe. The error messages returned by + * PHYSFS_getLastError() are unique by thread, and library-state-setting + * functions are mutex'd. For efficiency, individual file accesses are + * not locked, so you can not safely read/write/seek/close/etc the same + * file from two threads at the same time. Other race conditions are bugs + * that should be reported/patched. + * + * While you CAN use stdio/syscall file access in a program that has PHYSFS_* + * calls, doing so is not recommended, and you can not use system + * filehandles with PhysicsFS and vice versa. + * + * Note that archives need not be named as such: if you have a ZIP file and + * rename it with a .PKG extension, the file will still be recognized as a + * ZIP archive by PhysicsFS; the file's contents are used to determine its + * type where possible. + * + * Currently supported archive types: + * - .ZIP (pkZip/WinZip/Info-ZIP compatible) + * - .7Z (7zip archives) + * - .ISO (ISO9660 files, CD-ROM images) + * - .GRP (Build Engine groupfile archives) + * - .PAK (Quake I/II archive format) + * - .HOG (Descent I/II HOG file archives) + * - .MVL (Descent II movielib archives) + * - .WAD (DOOM engine archives) + * + * + * String policy for PhysicsFS 2.0 and later: + * + * PhysicsFS 1.0 could only deal with null-terminated ASCII strings. All high + * ASCII chars resulted in undefined behaviour, and there was no Unicode + * support at all. PhysicsFS 2.0 supports Unicode without breaking binary + * compatibility with the 1.0 API by using UTF-8 encoding of all strings + * passed in and out of the library. + * + * All strings passed through PhysicsFS are in null-terminated UTF-8 format. + * This means that if all you care about is English (ASCII characters <= 127) + * then you just use regular C strings. If you care about Unicode (and you + * should!) then you need to figure out what your platform wants, needs, and + * offers. If you are on Windows before Win2000 and build with Unicode + * support, your TCHAR strings are two bytes per character (this is called + * "UCS-2 encoding"). Any modern Windows uses UTF-16, which is two bytes + * per character for most characters, but some characters are four. You + * should convert them to UTF-8 before handing them to PhysicsFS with + * PHYSFS_utf8FromUtf16(), which handles both UTF-16 and UCS-2. If you're + * using Unix or Mac OS X, your wchar_t strings are four bytes per character + * ("UCS-4 encoding"). Use PHYSFS_utf8FromUcs4(). Mac OS X can give you UTF-8 + * directly from a CFString or NSString, and many Unixes generally give you C + * strings in UTF-8 format everywhere. If you have a single-byte high ASCII + * charset, like so-many European "codepages" you may be out of luck. We'll + * convert from "Latin1" to UTF-8 only, and never back to Latin1. If you're + * above ASCII 127, all bets are off: move to Unicode or use your platform's + * facilities. Passing a C string with high-ASCII data that isn't UTF-8 + * encoded will NOT do what you expect! + * + * Naturally, there's also PHYSFS_utf8ToUcs2(), PHYSFS_utf8ToUtf16(), and + * PHYSFS_utf8ToUcs4() to get data back into a format you like. Behind the + * scenes, PhysicsFS will use Unicode where possible: the UTF-8 strings on + * Windows will be converted and used with the multibyte Windows APIs, for + * example. + * + * PhysicsFS offers basic encoding conversion support, but not a whole string + * library. Get your stuff into whatever format you can work with. + * + * All platforms supported by PhysicsFS 2.1 and later fully support Unicode. + * We have dropped platforms that don't (OS/2, Mac OS 9, Windows 95, etc), as + * even an OS that's over a decade old should be expected to handle this well. + * If you absolutely must support one of these platforms, you should use an + * older release of PhysicsFS. + * + * Many game-specific archivers are seriously unprepared for Unicode (the + * Descent HOG/MVL and Build Engine GRP archivers, for example, only offer a + * DOS 8.3 filename, for example). Nothing can be done for these, but they + * tend to be legacy formats for existing content that was all ASCII (and + * thus, valid UTF-8) anyhow. Other formats, like .ZIP, don't explicitly + * offer Unicode support, but unofficially expect filenames to be UTF-8 + * encoded, and thus Just Work. Most everything does the right thing without + * bothering you, but it's good to be aware of these nuances in case they + * don't. + * + * + * Other stuff: + * + * Please see the file LICENSE.txt in the source's root directory for + * licensing and redistribution rights. + * + * Please see the file CREDITS.txt in the source's "docs" directory for + * a more or less complete list of who's responsible for this. + * + * \author Ryan C. Gordon. + */ + +#ifndef _INCLUDE_PHYSFS_H_ +#define _INCLUDE_PHYSFS_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +#if defined(PHYSFS_DECL) +/* do nothing. */ +#elif (defined SWIG) +#define PHYSFS_DECL extern +#elif (defined _MSC_VER) +#define PHYSFS_DECL __declspec(dllexport) +#elif (defined __SUNPRO_C) +#define PHYSFS_DECL __global +#elif ((__GNUC__ >= 3) && (!__EMX__) && (!sun)) +#define PHYSFS_DECL __attribute__((visibility("default"))) +#else +#define PHYSFS_DECL +#endif + +#if defined(PHYSFS_DEPRECATED) +/* do nothing. */ +#elif (defined SWIG) /* ignore deprecated, since bindings use everything. */ +#define PHYSFS_DEPRECATED +#elif (__GNUC__ >= 4) /* technically, this arrived in gcc 3.1, but oh well. */ +#define PHYSFS_DEPRECATED __attribute__((deprecated)) +#else +#define PHYSFS_DEPRECATED +#endif + +#if 0 /* !!! FIXME: look into this later. */ +#if defined(PHYSFS_CALL) +/* do nothing. */ +#elif defined(__WIN32__) && !defined(__GNUC__) +#define PHYSFS_CALL __cdecl +#else +#define PHYSFS_CALL +#endif +#endif + +/** + * \typedef PHYSFS_uint8 + * \brief An unsigned, 8-bit integer type. + */ +typedef unsigned char PHYSFS_uint8; + +/** + * \typedef PHYSFS_sint8 + * \brief A signed, 8-bit integer type. + */ +typedef signed char PHYSFS_sint8; + +/** + * \typedef PHYSFS_uint16 + * \brief An unsigned, 16-bit integer type. + */ +typedef unsigned short PHYSFS_uint16; + +/** + * \typedef PHYSFS_sint16 + * \brief A signed, 16-bit integer type. + */ +typedef signed short PHYSFS_sint16; + +/** + * \typedef PHYSFS_uint32 + * \brief An unsigned, 32-bit integer type. + */ +typedef unsigned int PHYSFS_uint32; + +/** + * \typedef PHYSFS_sint32 + * \brief A signed, 32-bit integer type. + */ +typedef signed int PHYSFS_sint32; + +/** + * \typedef PHYSFS_uint64 + * \brief An unsigned, 64-bit integer type. + * \warning on platforms without any sort of 64-bit datatype, this is + * equivalent to PHYSFS_uint32! + */ + +/** + * \typedef PHYSFS_sint64 + * \brief A signed, 64-bit integer type. + * \warning on platforms without any sort of 64-bit datatype, this is + * equivalent to PHYSFS_sint32! + */ + + +#if (defined PHYSFS_NO_64BIT_SUPPORT) /* oh well. */ +typedef PHYSFS_uint32 PHYSFS_uint64; +typedef PHYSFS_sint32 PHYSFS_sint64; +#elif (defined _MSC_VER) +typedef signed __int64 PHYSFS_sint64; +typedef unsigned __int64 PHYSFS_uint64; +#else +typedef unsigned long long PHYSFS_uint64; +typedef signed long long PHYSFS_sint64; +#endif + + +#ifndef SWIG +#ifndef DOXYGEN_SHOULD_IGNORE_THIS +/* Make sure the types really have the right sizes */ +#define PHYSFS_COMPILE_TIME_ASSERT(name, x) \ + typedef int PHYSFS_dummy_ ## name[(x) * 2 - 1] + +PHYSFS_COMPILE_TIME_ASSERT(uint8, sizeof(PHYSFS_uint8) == 1); +PHYSFS_COMPILE_TIME_ASSERT(sint8, sizeof(PHYSFS_sint8) == 1); +PHYSFS_COMPILE_TIME_ASSERT(uint16, sizeof(PHYSFS_uint16) == 2); +PHYSFS_COMPILE_TIME_ASSERT(sint16, sizeof(PHYSFS_sint16) == 2); +PHYSFS_COMPILE_TIME_ASSERT(uint32, sizeof(PHYSFS_uint32) == 4); +PHYSFS_COMPILE_TIME_ASSERT(sint32, sizeof(PHYSFS_sint32) == 4); + +#ifndef PHYSFS_NO_64BIT_SUPPORT +PHYSFS_COMPILE_TIME_ASSERT(uint64, sizeof(PHYSFS_uint64) == 8); +PHYSFS_COMPILE_TIME_ASSERT(sint64, sizeof(PHYSFS_sint64) == 8); +#endif + +#undef PHYSFS_COMPILE_TIME_ASSERT + +#endif /* DOXYGEN_SHOULD_IGNORE_THIS */ +#endif /* SWIG */ + + +/** + * \struct PHYSFS_File + * \brief A PhysicsFS file handle. + * + * You get a pointer to one of these when you open a file for reading, + * writing, or appending via PhysicsFS. + * + * As you can see from the lack of meaningful fields, you should treat this + * as opaque data. Don't try to manipulate the file handle, just pass the + * pointer you got, unmolested, to various PhysicsFS APIs. + * + * \sa PHYSFS_openRead + * \sa PHYSFS_openWrite + * \sa PHYSFS_openAppend + * \sa PHYSFS_close + * \sa PHYSFS_read + * \sa PHYSFS_write + * \sa PHYSFS_seek + * \sa PHYSFS_tell + * \sa PHYSFS_eof + * \sa PHYSFS_setBuffer + * \sa PHYSFS_flush + */ +typedef struct PHYSFS_File +{ + void *opaque; /**< That's all you get. Don't touch. */ +} PHYSFS_File; + + +/** + * \def PHYSFS_file + * \brief 1.0 API compatibility define. + * + * PHYSFS_file is identical to PHYSFS_File. This #define is here for backwards + * compatibility with the 1.0 API, which had an inconsistent capitalization + * convention in this case. New code should use PHYSFS_File, as this #define + * may go away someday. + * + * \sa PHYSFS_File + */ +#define PHYSFS_file PHYSFS_File + + +/** + * \struct PHYSFS_ArchiveInfo + * \brief Information on various PhysicsFS-supported archives. + * + * This structure gives you details on what sort of archives are supported + * by this implementation of PhysicsFS. Archives tend to be things like + * ZIP files and such. + * + * \warning Not all binaries are created equal! PhysicsFS can be built with + * or without support for various archives. You can check with + * PHYSFS_supportedArchiveTypes() to see if your archive type is + * supported. + * + * \sa PHYSFS_supportedArchiveTypes + */ +typedef struct PHYSFS_ArchiveInfo +{ + const char *extension; /**< Archive file extension: "ZIP", for example. */ + const char *description; /**< Human-readable archive description. */ + const char *author; /**< Person who did support for this archive. */ + const char *url; /**< URL related to this archive */ +} PHYSFS_ArchiveInfo; + + +/** + * \struct PHYSFS_Version + * \brief Information the version of PhysicsFS in use. + * + * Represents the library's version as three levels: major revision + * (increments with massive changes, additions, and enhancements), + * minor revision (increments with backwards-compatible changes to the + * major revision), and patchlevel (increments with fixes to the minor + * revision). + * + * \sa PHYSFS_VERSION + * \sa PHYSFS_getLinkedVersion + */ +typedef struct PHYSFS_Version +{ + PHYSFS_uint8 major; /**< major revision */ + PHYSFS_uint8 minor; /**< minor revision */ + PHYSFS_uint8 patch; /**< patchlevel */ +} PHYSFS_Version; + + +#ifndef SWIG /* not available from scripting languages. */ + +#ifndef DOXYGEN_SHOULD_IGNORE_THIS +#define PHYSFS_VER_MAJOR 2 +#define PHYSFS_VER_MINOR 1 +#define PHYSFS_VER_PATCH 0 +#endif /* DOXYGEN_SHOULD_IGNORE_THIS */ + + +/* PhysicsFS state stuff ... */ + +/** + * \def PHYSFS_VERSION(x) + * \brief Macro to determine PhysicsFS version program was compiled against. + * + * This macro fills in a PHYSFS_Version structure with the version of the + * library you compiled against. This is determined by what header the + * compiler uses. Note that if you dynamically linked the library, you might + * have a slightly newer or older version at runtime. That version can be + * determined with PHYSFS_getLinkedVersion(), which, unlike PHYSFS_VERSION, + * is not a macro. + * + * \param x A pointer to a PHYSFS_Version struct to initialize. + * + * \sa PHYSFS_Version + * \sa PHYSFS_getLinkedVersion + */ +#define PHYSFS_VERSION(x) \ +{ \ + (x)->major = PHYSFS_VER_MAJOR; \ + (x)->minor = PHYSFS_VER_MINOR; \ + (x)->patch = PHYSFS_VER_PATCH; \ +} + +#endif /* SWIG */ + + +/** + * \fn void PHYSFS_getLinkedVersion(PHYSFS_Version *ver) + * \brief Get the version of PhysicsFS that is linked against your program. + * + * If you are using a shared library (DLL) version of PhysFS, then it is + * possible that it will be different than the version you compiled against. + * + * This is a real function; the macro PHYSFS_VERSION tells you what version + * of PhysFS you compiled against: + * + * \code + * PHYSFS_Version compiled; + * PHYSFS_Version linked; + * + * PHYSFS_VERSION(&compiled); + * PHYSFS_getLinkedVersion(&linked); + * printf("We compiled against PhysFS version %d.%d.%d ...\n", + * compiled.major, compiled.minor, compiled.patch); + * printf("But we linked against PhysFS version %d.%d.%d.\n", + * linked.major, linked.minor, linked.patch); + * \endcode + * + * This function may be called safely at any time, even before PHYSFS_init(). + * + * \sa PHYSFS_VERSION + */ +PHYSFS_DECL void PHYSFS_getLinkedVersion(PHYSFS_Version *ver); + + +/** + * \fn int PHYSFS_init(const char *argv0) + * \brief Initialize the PhysicsFS library. + * + * This must be called before any other PhysicsFS function. + * + * This should be called prior to any attempts to change your process's + * current working directory. + * + * \param argv0 the argv[0] string passed to your program's mainline. + * This may be NULL on most platforms (such as ones without a + * standard main() function), but you should always try to pass + * something in here. Unix-like systems such as Linux _need_ to + * pass argv[0] from main() in here. + * \return nonzero on success, zero on error. Specifics of the error can be + * gleaned from PHYSFS_getLastError(). + * + * \sa PHYSFS_deinit + * \sa PHYSFS_isInit + */ +PHYSFS_DECL int PHYSFS_init(const char *argv0); + + +/** + * \fn int PHYSFS_deinit(void) + * \brief Deinitialize the PhysicsFS library. + * + * This closes any files opened via PhysicsFS, blanks the search/write paths, + * frees memory, and invalidates all of your file handles. + * + * Note that this call can FAIL if there's a file open for writing that + * refuses to close (for example, the underlying operating system was + * buffering writes to network filesystem, and the fileserver has crashed, + * or a hard drive has failed, etc). It is usually best to close all write + * handles yourself before calling this function, so that you can gracefully + * handle a specific failure. + * + * Once successfully deinitialized, PHYSFS_init() can be called again to + * restart the subsystem. All default API states are restored at this + * point, with the exception of any custom allocator you might have + * specified, which survives between initializations. + * + * \return nonzero on success, zero on error. Specifics of the error can be + * gleaned from PHYSFS_getLastError(). If failure, state of PhysFS is + * undefined, and probably badly screwed up. + * + * \sa PHYSFS_init + * \sa PHYSFS_isInit + */ +PHYSFS_DECL int PHYSFS_deinit(void); + + +/** + * \fn const PHYSFS_ArchiveInfo **PHYSFS_supportedArchiveTypes(void) + * \brief Get a list of supported archive types. + * + * Get a list of archive types supported by this implementation of PhysicFS. + * These are the file formats usable for search path entries. This is for + * informational purposes only. Note that the extension listed is merely + * convention: if we list "ZIP", you can open a PkZip-compatible archive + * with an extension of "XYZ", if you like. + * + * The returned value is an array of pointers to PHYSFS_ArchiveInfo structures, + * with a NULL entry to signify the end of the list: + * + * \code + * PHYSFS_ArchiveInfo **i; + * + * for (i = PHYSFS_supportedArchiveTypes(); *i != NULL; i++) + * { + * printf("Supported archive: [%s], which is [%s].\n", + * (*i)->extension, (*i)->description); + * } + * \endcode + * + * The return values are pointers to internal memory, and should + * be considered READ ONLY, and never freed. The returned values are + * valid until the next call to PHYSFS_deinit(). + * + * \return READ ONLY Null-terminated array of READ ONLY structures. + */ +PHYSFS_DECL const PHYSFS_ArchiveInfo **PHYSFS_supportedArchiveTypes(void); + + +/** + * \fn void PHYSFS_freeList(void *listVar) + * \brief Deallocate resources of lists returned by PhysicsFS. + * + * Certain PhysicsFS functions return lists of information that are + * dynamically allocated. Use this function to free those resources. + * + * It is safe to pass a NULL here, but doing so will cause a crash in versions + * before PhysicsFS 2.1.0. + * + * \param listVar List of information specified as freeable by this function. + * Passing NULL is safe; it is a valid no-op. + * + * \sa PHYSFS_getCdRomDirs + * \sa PHYSFS_enumerateFiles + * \sa PHYSFS_getSearchPath + */ +PHYSFS_DECL void PHYSFS_freeList(void *listVar); + + +/** + * \fn const char *PHYSFS_getLastError(void) + * \brief Get human-readable error information. + * + * \warning As of PhysicsFS 2.1, this function has been nerfed. + * Before PhysicsFS 2.1, this function was the only way to get + * error details beyond a given function's basic return value. + * This was meant to be a human-readable string in one of several + * languages, and was not useful for application parsing. This was + * a problem, because the developer and not the user chose the + * language at compile time, and the PhysicsFS maintainers had + * to (poorly) maintain a significant amount of localization work. + * The app couldn't parse the strings, even if they counted on a + * specific language, since some were dynamically generated. + * In 2.1 and later, this always returns a static string in + * English; you may use it as a key string for your own + * localizations if you like, as we'll promise not to change + * existing error strings. Also, if your application wants to + * look at specific errors, we now offer a better option: + * use PHYSFS_getLastErrorCode() instead. + * + * Get the last PhysicsFS error message as a human-readable, null-terminated + * string. This will return NULL if there's been no error since the last call + * to this function. The pointer returned by this call points to an internal + * buffer. Each thread has a unique error state associated with it, but each + * time a new error message is set, it will overwrite the previous one + * associated with that thread. It is safe to call this function at anytime, + * even before PHYSFS_init(). + * + * PHYSFS_getLastError() and PHYSFS_getLastErrorCode() both reset the same + * thread-specific error state. Calling one will wipe out the other's + * data. If you need both, call PHYSFS_getLastErrorCode(), then pass that + * value to PHYSFS_getErrorByCode(). + * + * As of PhysicsFS 2.1, this function only presents text in the English + * language, but the strings are static, so you can use them as keys into + * your own localization dictionary. These strings are meant to be passed on + * directly to the user. + * + * Generally, applications should only concern themselves with whether a + * given function failed; however, if your code require more specifics, you + * should use PHYSFS_getLastErrorCode() instead of this function. + * + * \return READ ONLY string of last error message. + * + * \sa PHYSFS_getLastErrorCode + * \sa PHYSFS_getErrorByCode + */ +PHYSFS_DECL const char *PHYSFS_getLastError(void); + + +/** + * \fn const char *PHYSFS_getDirSeparator(void) + * \brief Get platform-dependent dir separator string. + * + * This returns "\\" on win32, "/" on Unix, and ":" on MacOS. It may be more + * than one character, depending on the platform, and your code should take + * that into account. Note that this is only useful for setting up the + * search/write paths, since access into those dirs always use '/' + * (platform-independent notation) to separate directories. This is also + * handy for getting platform-independent access when using stdio calls. + * + * \return READ ONLY null-terminated string of platform's dir separator. + */ +PHYSFS_DECL const char *PHYSFS_getDirSeparator(void); + + +/** + * \fn void PHYSFS_permitSymbolicLinks(int allow) + * \brief Enable or disable following of symbolic links. + * + * Some physical filesystems and archives contain files that are just pointers + * to other files. On the physical filesystem, opening such a link will + * (transparently) open the file that is pointed to. + * + * By default, PhysicsFS will check if a file is really a symlink during open + * calls and fail if it is. Otherwise, the link could take you outside the + * write and search paths, and compromise security. + * + * If you want to take that risk, call this function with a non-zero parameter. + * Note that this is more for sandboxing a program's scripting language, in + * case untrusted scripts try to compromise the system. Generally speaking, + * a user could very well have a legitimate reason to set up a symlink, so + * unless you feel there's a specific danger in allowing them, you should + * permit them. + * + * Symlinks are only explicitly checked when dealing with filenames + * in platform-independent notation. That is, when setting up your + * search and write paths, etc, symlinks are never checked for. + * + * Please note that PHYSFS_stat() will always check the path specified; if + * that path is a symlink, it will not be followed in any case. If symlinks + * aren't permitted through this function, PHYSFS_stat() ignores them, and + * would treat the query as if the path didn't exist at all. + * + * Symbolic link permission can be enabled or disabled at any time after + * you've called PHYSFS_init(), and is disabled by default. + * + * \param allow nonzero to permit symlinks, zero to deny linking. + * + * \sa PHYSFS_symbolicLinksPermitted + */ +PHYSFS_DECL void PHYSFS_permitSymbolicLinks(int allow); + + +/* !!! FIXME: const this? */ +/** + * \fn char **PHYSFS_getCdRomDirs(void) + * \brief Get an array of paths to available CD-ROM drives. + * + * The dirs returned are platform-dependent ("D:\" on Win32, "/cdrom" or + * whatnot on Unix). Dirs are only returned if there is a disc ready and + * accessible in the drive. So if you've got two drives (D: and E:), and only + * E: has a disc in it, then that's all you get. If the user inserts a disc + * in D: and you call this function again, you get both drives. If, on a + * Unix box, the user unmounts a disc and remounts it elsewhere, the next + * call to this function will reflect that change. + * + * This function refers to "CD-ROM" media, but it really means "inserted disc + * media," such as DVD-ROM, HD-DVD, CDRW, and Blu-Ray discs. It looks for + * filesystems, and as such won't report an audio CD, unless there's a + * mounted filesystem track on it. + * + * The returned value is an array of strings, with a NULL entry to signify the + * end of the list: + * + * \code + * char **cds = PHYSFS_getCdRomDirs(); + * char **i; + * + * for (i = cds; *i != NULL; i++) + * printf("cdrom dir [%s] is available.\n", *i); + * + * PHYSFS_freeList(cds); + * \endcode + * + * This call may block while drives spin up. Be forewarned. + * + * When you are done with the returned information, you may dispose of the + * resources by calling PHYSFS_freeList() with the returned pointer. + * + * \return Null-terminated array of null-terminated strings. + * + * \sa PHYSFS_getCdRomDirsCallback + */ +PHYSFS_DECL char **PHYSFS_getCdRomDirs(void); + + +/** + * \fn const char *PHYSFS_getBaseDir(void) + * \brief Get the path where the application resides. + * + * Helper function. + * + * Get the "base dir". This is the directory where the application was run + * from, which is probably the installation directory, and may or may not + * be the process's current working directory. + * + * You should probably use the base dir in your search path. + * + * \return READ ONLY string of base dir in platform-dependent notation. + * + * \sa PHYSFS_getPrefDir + */ +PHYSFS_DECL const char *PHYSFS_getBaseDir(void); + + +/** + * \fn const char *PHYSFS_getUserDir(void) + * \brief Get the path where user's home directory resides. + * + * \deprecated As of PhysicsFS 2.1, you probably want PHYSFS_getPrefDir(). + * + * Helper function. + * + * Get the "user dir". This is meant to be a suggestion of where a specific + * user of the system can store files. On Unix, this is her home directory. + * On systems with no concept of multiple home directories (MacOS, win95), + * this will default to something like "C:\mybasedir\users\username" + * where "username" will either be the login name, or "default" if the + * platform doesn't support multiple users, either. + * + * \return READ ONLY string of user dir in platform-dependent notation. + * + * \sa PHYSFS_getBaseDir + * \sa PHYSFS_getPrefDir + */ +PHYSFS_DECL const char *PHYSFS_getUserDir(void) PHYSFS_DEPRECATED; + + +/** + * \fn const char *PHYSFS_getWriteDir(void) + * \brief Get path where PhysicsFS will allow file writing. + * + * Get the current write dir. The default write dir is NULL. + * + * \return READ ONLY string of write dir in platform-dependent notation, + * OR NULL IF NO WRITE PATH IS CURRENTLY SET. + * + * \sa PHYSFS_setWriteDir + */ +PHYSFS_DECL const char *PHYSFS_getWriteDir(void); + + +/** + * \fn int PHYSFS_setWriteDir(const char *newDir) + * \brief Tell PhysicsFS where it may write files. + * + * Set a new write dir. This will override the previous setting. + * + * This call will fail (and fail to change the write dir) if the current + * write dir still has files open in it. + * + * \param newDir The new directory to be the root of the write dir, + * specified in platform-dependent notation. Setting to NULL + * disables the write dir, so no files can be opened for + * writing via PhysicsFS. + * \return non-zero on success, zero on failure. All attempts to open a file + * for writing via PhysicsFS will fail until this call succeeds. + * Specifics of the error can be gleaned from PHYSFS_getLastError(). + * + * \sa PHYSFS_getWriteDir + */ +PHYSFS_DECL int PHYSFS_setWriteDir(const char *newDir); + + +/** + * \fn int PHYSFS_addToSearchPath(const char *newDir, int appendToPath) + * \brief Add an archive or directory to the search path. + * + * \deprecated As of PhysicsFS 2.0, use PHYSFS_mount() instead. This + * function just wraps it anyhow. + * + * This function is equivalent to: + * + * \code + * PHYSFS_mount(newDir, NULL, appendToPath); + * \endcode + * + * You must use this and not PHYSFS_mount if binary compatibility with + * PhysicsFS 1.0 is important (which it may not be for many people). + * + * \sa PHYSFS_mount + * \sa PHYSFS_removeFromSearchPath + * \sa PHYSFS_getSearchPath + */ +PHYSFS_DECL int PHYSFS_addToSearchPath(const char *newDir, int appendToPath) + PHYSFS_DEPRECATED; + +/** + * \fn int PHYSFS_removeFromSearchPath(const char *oldDir) + * \brief Remove a directory or archive from the search path. + * + * \deprecated As of PhysicsFS 2.1, use PHYSFS_unmount() instead. This + * function just wraps it anyhow. There's no functional difference + * except the vocabulary changed from "adding to the search path" + * to "mounting" when that functionality was extended, and thus + * the preferred way to accomplish this function's work is now + * called "unmounting." + * + * This function is equivalent to: + * + * \code + * PHYSFS_unmount(oldDir); + * \endcode + * + * You must use this and not PHYSFS_unmount if binary compatibility with + * PhysicsFS 1.0 is important (which it may not be for many people). + * + * \sa PHYSFS_addToSearchPath + * \sa PHYSFS_getSearchPath + * \sa PHYSFS_unmount + */ +PHYSFS_DECL int PHYSFS_removeFromSearchPath(const char *oldDir) + PHYSFS_DEPRECATED; + + +/** + * \fn char **PHYSFS_getSearchPath(void) + * \brief Get the current search path. + * + * The default search path is an empty list. + * + * The returned value is an array of strings, with a NULL entry to signify the + * end of the list: + * + * \code + * char **i; + * + * for (i = PHYSFS_getSearchPath(); *i != NULL; i++) + * printf("[%s] is in the search path.\n", *i); + * \endcode + * + * When you are done with the returned information, you may dispose of the + * resources by calling PHYSFS_freeList() with the returned pointer. + * + * \return Null-terminated array of null-terminated strings. NULL if there + * was a problem (read: OUT OF MEMORY). + * + * \sa PHYSFS_getSearchPathCallback + * \sa PHYSFS_addToSearchPath + * \sa PHYSFS_removeFromSearchPath + */ +PHYSFS_DECL char **PHYSFS_getSearchPath(void); + + +/** + * \fn int PHYSFS_setSaneConfig(const char *organization, const char *appName, const char *archiveExt, int includeCdRoms, int archivesFirst) + * \brief Set up sane, default paths. + * + * Helper function. + * + * The write dir will be set to the pref dir returned by + * \code PHYSFS_getPrefDir(organization, appName) \endcode, which is + * created if it doesn't exist. + * + * The above is sufficient to make sure your program's configuration directory + * is separated from other clutter, and platform-independent. + * + * The search path will be: + * + * - The Write Dir (created if it doesn't exist) + * - The Base Dir (PHYSFS_getBaseDir()) + * - All found CD-ROM dirs (optionally) + * + * These directories are then searched for files ending with the extension + * (archiveExt), which, if they are valid and supported archives, will also + * be added to the search path. If you specified "PKG" for (archiveExt), and + * there's a file named data.PKG in the base dir, it'll be checked. Archives + * can either be appended or prepended to the search path in alphabetical + * order, regardless of which directories they were found in. All archives + * are mounted in the root of the virtual file system ("/"). + * + * All of this can be accomplished from the application, but this just does it + * all for you. Feel free to add more to the search path manually, too. + * + * \param organization Name of your company/group/etc to be used as a + * dirname, so keep it small, and no-frills. + * + * \param appName Program-specific name of your program, to separate it + * from other programs using PhysicsFS. + * + * \param archiveExt File extension used by your program to specify an + * archive. For example, Quake 3 uses "pk3", even though + * they are just zipfiles. Specify NULL to not dig out + * archives automatically. Do not specify the '.' char; + * If you want to look for ZIP files, specify "ZIP" and + * not ".ZIP" ... the archive search is case-insensitive. + * + * \param includeCdRoms Non-zero to include CD-ROMs in the search path, and + * (if (archiveExt) != NULL) search them for archives. + * This may cause a significant amount of blocking + * while discs are accessed, and if there are no discs + * in the drive (or even not mounted on Unix systems), + * then they may not be made available anyhow. You may + * want to specify zero and handle the disc setup + * yourself. + * + * \param archivesFirst Non-zero to prepend the archives to the search path. + * Zero to append them. Ignored if !(archiveExt). + * + * \return nonzero on success, zero on error. Specifics of the error can be + * gleaned from PHYSFS_getLastError(). + */ +PHYSFS_DECL int PHYSFS_setSaneConfig(const char *organization, + const char *appName, + const char *archiveExt, + int includeCdRoms, + int archivesFirst); + + +/* Directory management stuff ... */ + +/** + * \fn int PHYSFS_mkdir(const char *dirName) + * \brief Create a directory. + * + * This is specified in platform-independent notation in relation to the + * write dir. All missing parent directories are also created if they + * don't exist. + * + * So if you've got the write dir set to "C:\mygame\writedir" and call + * PHYSFS_mkdir("downloads/maps") then the directories + * "C:\mygame\writedir\downloads" and "C:\mygame\writedir\downloads\maps" + * will be created if possible. If the creation of "maps" fails after we + * have successfully created "downloads", then the function leaves the + * created directory behind and reports failure. + * + * \param dirName New dir to create. + * \return nonzero on success, zero on error. Specifics of the error can be + * gleaned from PHYSFS_getLastError(). + * + * \sa PHYSFS_delete + */ +PHYSFS_DECL int PHYSFS_mkdir(const char *dirName); + + +/** + * \fn int PHYSFS_delete(const char *filename) + * \brief Delete a file or directory. + * + * (filename) is specified in platform-independent notation in relation to the + * write dir. + * + * A directory must be empty before this call can delete it. + * + * Deleting a symlink will remove the link, not what it points to, regardless + * of whether you "permitSymLinks" or not. + * + * So if you've got the write dir set to "C:\mygame\writedir" and call + * PHYSFS_delete("downloads/maps/level1.map") then the file + * "C:\mygame\writedir\downloads\maps\level1.map" is removed from the + * physical filesystem, if it exists and the operating system permits the + * deletion. + * + * Note that on Unix systems, deleting a file may be successful, but the + * actual file won't be removed until all processes that have an open + * filehandle to it (including your program) close their handles. + * + * Chances are, the bits that make up the file still exist, they are just + * made available to be written over at a later point. Don't consider this + * a security method or anything. :) + * + * \param filename Filename to delete. + * \return nonzero on success, zero on error. Specifics of the error can be + * gleaned from PHYSFS_getLastError(). + */ +PHYSFS_DECL int PHYSFS_delete(const char *filename); + + +/** + * \fn const char *PHYSFS_getRealDir(const char *filename) + * \brief Figure out where in the search path a file resides. + * + * The file is specified in platform-independent notation. The returned + * filename will be the element of the search path where the file was found, + * which may be a directory, or an archive. Even if there are multiple + * matches in different parts of the search path, only the first one found + * is used, just like when opening a file. + * + * So, if you look for "maps/level1.map", and C:\\mygame is in your search + * path and C:\\mygame\\maps\\level1.map exists, then "C:\mygame" is returned. + * + * If a any part of a match is a symbolic link, and you've not explicitly + * permitted symlinks, then it will be ignored, and the search for a match + * will continue. + * + * If you specify a fake directory that only exists as a mount point, it'll + * be associated with the first archive mounted there, even though that + * directory isn't necessarily contained in a real archive. + * + * \warning This will return NULL if there is no real directory associated + * with (filename). Specifically, PHYSFS_mountIo(), + * PHYSFS_mountMemory(), and PHYSFS_mountHandle() will return NULL + * even if the filename is found in the search path. Plan accordingly. + * + * \param filename file to look for. + * \return READ ONLY string of element of search path containing the + * the file in question. NULL if not found. + */ +PHYSFS_DECL const char *PHYSFS_getRealDir(const char *filename); + + +/** + * \fn char **PHYSFS_enumerateFiles(const char *dir) + * \brief Get a file listing of a search path's directory. + * + * Matching directories are interpolated. That is, if "C:\mydir" is in the + * search path and contains a directory "savegames" that contains "x.sav", + * "y.sav", and "z.sav", and there is also a "C:\userdir" in the search path + * that has a "savegames" subdirectory with "w.sav", then the following code: + * + * \code + * char **rc = PHYSFS_enumerateFiles("savegames"); + * char **i; + * + * for (i = rc; *i != NULL; i++) + * printf(" * We've got [%s].\n", *i); + * + * PHYSFS_freeList(rc); + * \endcode + * + * \...will print: + * + * \verbatim + * We've got [x.sav]. + * We've got [y.sav]. + * We've got [z.sav]. + * We've got [w.sav].\endverbatim + * + * Feel free to sort the list however you like. We only promise there will + * be no duplicates, but not what order the final list will come back in. + * + * Don't forget to call PHYSFS_freeList() with the return value from this + * function when you are done with it. + * + * \param dir directory in platform-independent notation to enumerate. + * \return Null-terminated array of null-terminated strings. + * + * \sa PHYSFS_enumerateFilesCallback + */ +PHYSFS_DECL char **PHYSFS_enumerateFiles(const char *dir); + + +/** + * \fn int PHYSFS_exists(const char *fname) + * \brief Determine if a file exists in the search path. + * + * Reports true if there is an entry anywhere in the search path by the + * name of (fname). + * + * Note that entries that are symlinks are ignored if + * PHYSFS_permitSymbolicLinks(1) hasn't been called, so you + * might end up further down in the search path than expected. + * + * \param fname filename in platform-independent notation. + * \return non-zero if filename exists. zero otherwise. + */ +PHYSFS_DECL int PHYSFS_exists(const char *fname); + + +/** + * \fn int PHYSFS_isDirectory(const char *fname) + * \brief Determine if a file in the search path is really a directory. + * + * \deprecated As of PhysicsFS 2.1, use PHYSFS_stat() instead. This + * function just wraps it anyhow. + * + * Determine if the first occurence of (fname) in the search path is + * really a directory entry. + * + * Note that entries that are symlinks are ignored if + * PHYSFS_permitSymbolicLinks(1) hasn't been called, so you + * might end up further down in the search path than expected. + * + * \param fname filename in platform-independent notation. + * \return non-zero if filename exists and is a directory. zero otherwise. + * + * \sa PHYSFS_stat + * \sa PHYSFS_exists + */ +PHYSFS_DECL int PHYSFS_isDirectory(const char *fname) PHYSFS_DEPRECATED; + + +/** + * \fn int PHYSFS_isSymbolicLink(const char *fname) + * \brief Determine if a file in the search path is really a symbolic link. + * + * \deprecated As of PhysicsFS 2.1, use PHYSFS_stat() instead. This + * function just wraps it anyhow. + * + * Determine if the first occurence of (fname) in the search path is + * really a symbolic link. + * + * Note that entries that are symlinks are ignored if + * PHYSFS_permitSymbolicLinks(1) hasn't been called, and as such, + * this function will always return 0 in that case. + * + * \param fname filename in platform-independent notation. + * \return non-zero if filename exists and is a symlink. zero otherwise. + * + * \sa PHYSFS_stat + * \sa PHYSFS_exists + */ +PHYSFS_DECL int PHYSFS_isSymbolicLink(const char *fname) PHYSFS_DEPRECATED; + + +/** + * \fn PHYSFS_sint64 PHYSFS_getLastModTime(const char *filename) + * \brief Get the last modification time of a file. + * + * \deprecated As of PhysicsFS 2.1, use PHYSFS_stat() instead. This + * function just wraps it anyhow. + * + * The modtime is returned as a number of seconds since the Unix epoch + * (midnight, Jan 1, 1970). The exact derivation and accuracy of this time + * depends on the particular archiver. If there is no reasonable way to + * obtain this information for a particular archiver, or there was some sort + * of error, this function returns (-1). + * + * You must use this and not PHYSFS_stat() if binary compatibility with + * PhysicsFS 2.0 is important (which it may not be for many people). + * + * \param filename filename to check, in platform-independent notation. + * \return last modified time of the file. -1 if it can't be determined. + * + * \sa PHYSFS_stat + */ +PHYSFS_DECL PHYSFS_sint64 PHYSFS_getLastModTime(const char *filename) + PHYSFS_DEPRECATED; + + +/* i/o stuff... */ + +/** + * \fn PHYSFS_File *PHYSFS_openWrite(const char *filename) + * \brief Open a file for writing. + * + * Open a file for writing, in platform-independent notation and in relation + * to the write dir as the root of the writable filesystem. The specified + * file is created if it doesn't exist. If it does exist, it is truncated to + * zero bytes, and the writing offset is set to the start. + * + * Note that entries that are symlinks are ignored if + * PHYSFS_permitSymbolicLinks(1) hasn't been called, and opening a + * symlink with this function will fail in such a case. + * + * \param filename File to open. + * \return A valid PhysicsFS filehandle on success, NULL on error. Specifics + * of the error can be gleaned from PHYSFS_getLastError(). + * + * \sa PHYSFS_openRead + * \sa PHYSFS_openAppend + * \sa PHYSFS_write + * \sa PHYSFS_close + */ +PHYSFS_DECL PHYSFS_File *PHYSFS_openWrite(const char *filename); + + +/** + * \fn PHYSFS_File *PHYSFS_openAppend(const char *filename) + * \brief Open a file for appending. + * + * Open a file for writing, in platform-independent notation and in relation + * to the write dir as the root of the writable filesystem. The specified + * file is created if it doesn't exist. If it does exist, the writing offset + * is set to the end of the file, so the first write will be the byte after + * the end. + * + * Note that entries that are symlinks are ignored if + * PHYSFS_permitSymbolicLinks(1) hasn't been called, and opening a + * symlink with this function will fail in such a case. + * + * \param filename File to open. + * \return A valid PhysicsFS filehandle on success, NULL on error. Specifics + * of the error can be gleaned from PHYSFS_getLastError(). + * + * \sa PHYSFS_openRead + * \sa PHYSFS_openWrite + * \sa PHYSFS_write + * \sa PHYSFS_close + */ +PHYSFS_DECL PHYSFS_File *PHYSFS_openAppend(const char *filename); + + +/** + * \fn PHYSFS_File *PHYSFS_openRead(const char *filename) + * \brief Open a file for reading. + * + * Open a file for reading, in platform-independent notation. The search path + * is checked one at a time until a matching file is found, in which case an + * abstract filehandle is associated with it, and reading may be done. + * The reading offset is set to the first byte of the file. + * + * Note that entries that are symlinks are ignored if + * PHYSFS_permitSymbolicLinks(1) hasn't been called, and opening a + * symlink with this function will fail in such a case. + * + * \param filename File to open. + * \return A valid PhysicsFS filehandle on success, NULL on error. Specifics + * of the error can be gleaned from PHYSFS_getLastError(). + * + * \sa PHYSFS_openWrite + * \sa PHYSFS_openAppend + * \sa PHYSFS_read + * \sa PHYSFS_close + */ +PHYSFS_DECL PHYSFS_File *PHYSFS_openRead(const char *filename); + + +/** + * \fn int PHYSFS_close(PHYSFS_File *handle) + * \brief Close a PhysicsFS filehandle. + * + * This call is capable of failing if the operating system was buffering + * writes to the physical media, and, now forced to write those changes to + * physical media, can not store the data for some reason. In such a case, + * the filehandle stays open. A well-written program should ALWAYS check the + * return value from the close call in addition to every writing call! + * + * \param handle handle returned from PHYSFS_open*(). + * \return nonzero on success, zero on error. Specifics of the error can be + * gleaned from PHYSFS_getLastError(). + * + * \sa PHYSFS_openRead + * \sa PHYSFS_openWrite + * \sa PHYSFS_openAppend + */ +PHYSFS_DECL int PHYSFS_close(PHYSFS_File *handle); + + +/** + * \fn PHYSFS_sint64 PHYSFS_read(PHYSFS_File *handle, void *buffer, PHYSFS_uint32 objSize, PHYSFS_uint32 objCount) + * \brief Read data from a PhysicsFS filehandle + * + * The file must be opened for reading. + * + * \deprecated As of PhysicsFS 2.1, use PHYSFS_readBytes() instead. This + * function just wraps it anyhow. This function never clarified + * what would happen if you managed to read a partial object, so + * working at the byte level makes this cleaner for everyone, + * especially now that PHYSFS_Io interfaces can be supplied by the + * application. + * + * \param handle handle returned from PHYSFS_openRead(). + * \param buffer buffer to store read data into. + * \param objSize size in bytes of objects being read from (handle). + * \param objCount number of (objSize) objects to read from (handle). + * \return number of objects read. PHYSFS_getLastError() can shed light on + * the reason this might be < (objCount), as can PHYSFS_eof(). + * -1 if complete failure. + * + * \sa PHYSFS_readBytes + * \sa PHYSFS_eof + */ +PHYSFS_DECL PHYSFS_sint64 PHYSFS_read(PHYSFS_File *handle, + void *buffer, + PHYSFS_uint32 objSize, + PHYSFS_uint32 objCount) + PHYSFS_DEPRECATED; + +/** + * \fn PHYSFS_sint64 PHYSFS_write(PHYSFS_File *handle, const void *buffer, PHYSFS_uint32 objSize, PHYSFS_uint32 objCount) + * \brief Write data to a PhysicsFS filehandle + * + * The file must be opened for writing. + * + * \deprecated As of PhysicsFS 2.1, use PHYSFS_writeBytes() instead. This + * function just wraps it anyhow. This function never clarified + * what would happen if you managed to write a partial object, so + * working at the byte level makes this cleaner for everyone, + * especially now that PHYSFS_Io interfaces can be supplied by the + * application. + * + * \param handle retval from PHYSFS_openWrite() or PHYSFS_openAppend(). + * \param buffer buffer of bytes to write to (handle). + * \param objSize size in bytes of objects being written to (handle). + * \param objCount number of (objSize) objects to write to (handle). + * \return number of objects written. PHYSFS_getLastError() can shed light on + * the reason this might be < (objCount). -1 if complete failure. + * + * \sa PHYSFS_writeBytes + */ +PHYSFS_DECL PHYSFS_sint64 PHYSFS_write(PHYSFS_File *handle, + const void *buffer, + PHYSFS_uint32 objSize, + PHYSFS_uint32 objCount) + PHYSFS_DEPRECATED; + + +/* File position stuff... */ + +/** + * \fn int PHYSFS_eof(PHYSFS_File *handle) + * \brief Check for end-of-file state on a PhysicsFS filehandle. + * + * Determine if the end of file has been reached in a PhysicsFS filehandle. + * + * \param handle handle returned from PHYSFS_openRead(). + * \return nonzero if EOF, zero if not. + * + * \sa PHYSFS_read + * \sa PHYSFS_tell + */ +PHYSFS_DECL int PHYSFS_eof(PHYSFS_File *handle); + + +/** + * \fn PHYSFS_sint64 PHYSFS_tell(PHYSFS_File *handle) + * \brief Determine current position within a PhysicsFS filehandle. + * + * \param handle handle returned from PHYSFS_open*(). + * \return offset in bytes from start of file. -1 if error occurred. + * Specifics of the error can be gleaned from PHYSFS_getLastError(). + * + * \sa PHYSFS_seek + */ +PHYSFS_DECL PHYSFS_sint64 PHYSFS_tell(PHYSFS_File *handle); + + +/** + * \fn int PHYSFS_seek(PHYSFS_File *handle, PHYSFS_uint64 pos) + * \brief Seek to a new position within a PhysicsFS filehandle. + * + * The next read or write will occur at that place. Seeking past the + * beginning or end of the file is not allowed, and causes an error. + * + * \param handle handle returned from PHYSFS_open*(). + * \param pos number of bytes from start of file to seek to. + * \return nonzero on success, zero on error. Specifics of the error can be + * gleaned from PHYSFS_getLastError(). + * + * \sa PHYSFS_tell + */ +PHYSFS_DECL int PHYSFS_seek(PHYSFS_File *handle, PHYSFS_uint64 pos); + + +/** + * \fn PHYSFS_sint64 PHYSFS_fileLength(PHYSFS_File *handle) + * \brief Get total length of a file in bytes. + * + * Note that if another process/thread is writing to this file at the same + * time, then the information this function supplies could be incorrect + * before you get it. Use with caution, or better yet, don't use at all. + * + * \param handle handle returned from PHYSFS_open*(). + * \return size in bytes of the file. -1 if can't be determined. + * + * \sa PHYSFS_tell + * \sa PHYSFS_seek + */ +PHYSFS_DECL PHYSFS_sint64 PHYSFS_fileLength(PHYSFS_File *handle); + + +/* Buffering stuff... */ + +/** + * \fn int PHYSFS_setBuffer(PHYSFS_File *handle, PHYSFS_uint64 bufsize) + * \brief Set up buffering for a PhysicsFS file handle. + * + * Define an i/o buffer for a file handle. A memory block of (bufsize) bytes + * will be allocated and associated with (handle). + * + * For files opened for reading, up to (bufsize) bytes are read from (handle) + * and stored in the internal buffer. Calls to PHYSFS_read() will pull + * from this buffer until it is empty, and then refill it for more reading. + * Note that compressed files, like ZIP archives, will decompress while + * buffering, so this can be handy for offsetting CPU-intensive operations. + * The buffer isn't filled until you do your next read. + * + * For files opened for writing, data will be buffered to memory until the + * buffer is full or the buffer is flushed. Closing a handle implicitly + * causes a flush...check your return values! + * + * Seeking, etc transparently accounts for buffering. + * + * You can resize an existing buffer by calling this function more than once + * on the same file. Setting the buffer size to zero will free an existing + * buffer. + * + * PhysicsFS file handles are unbuffered by default. + * + * Please check the return value of this function! Failures can include + * not being able to seek backwards in a read-only file when removing the + * buffer, not being able to allocate the buffer, and not being able to + * flush the buffer to disk, among other unexpected problems. + * + * \param handle handle returned from PHYSFS_open*(). + * \param bufsize size, in bytes, of buffer to allocate. + * \return nonzero if successful, zero on error. + * + * \sa PHYSFS_flush + * \sa PHYSFS_read + * \sa PHYSFS_write + * \sa PHYSFS_close + */ +PHYSFS_DECL int PHYSFS_setBuffer(PHYSFS_File *handle, PHYSFS_uint64 bufsize); + + +/** + * \fn int PHYSFS_flush(PHYSFS_File *handle) + * \brief Flush a buffered PhysicsFS file handle. + * + * For buffered files opened for writing, this will put the current contents + * of the buffer to disk and flag the buffer as empty if possible. + * + * For buffered files opened for reading or unbuffered files, this is a safe + * no-op, and will report success. + * + * \param handle handle returned from PHYSFS_open*(). + * \return nonzero if successful, zero on error. + * + * \sa PHYSFS_setBuffer + * \sa PHYSFS_close + */ +PHYSFS_DECL int PHYSFS_flush(PHYSFS_File *handle); + + +/* Byteorder stuff... */ + +#ifndef SWIG /* not available from scripting languages. */ + +/** + * \fn PHYSFS_sint16 PHYSFS_swapSLE16(PHYSFS_sint16 val) + * \brief Swap littleendian signed 16 to platform's native byte order. + * + * Take a 16-bit signed value in littleendian format and convert it to + * the platform's native byte order. + * + * \param val value to convert + * \return converted value. + */ +PHYSFS_DECL PHYSFS_sint16 PHYSFS_swapSLE16(PHYSFS_sint16 val); + + +/** + * \fn PHYSFS_uint16 PHYSFS_swapULE16(PHYSFS_uint16 val) + * \brief Swap littleendian unsigned 16 to platform's native byte order. + * + * Take a 16-bit unsigned value in littleendian format and convert it to + * the platform's native byte order. + * + * \param val value to convert + * \return converted value. + */ +PHYSFS_DECL PHYSFS_uint16 PHYSFS_swapULE16(PHYSFS_uint16 val); + +/** + * \fn PHYSFS_sint32 PHYSFS_swapSLE32(PHYSFS_sint32 val) + * \brief Swap littleendian signed 32 to platform's native byte order. + * + * Take a 32-bit signed value in littleendian format and convert it to + * the platform's native byte order. + * + * \param val value to convert + * \return converted value. + */ +PHYSFS_DECL PHYSFS_sint32 PHYSFS_swapSLE32(PHYSFS_sint32 val); + + +/** + * \fn PHYSFS_uint32 PHYSFS_swapULE32(PHYSFS_uint32 val) + * \brief Swap littleendian unsigned 32 to platform's native byte order. + * + * Take a 32-bit unsigned value in littleendian format and convert it to + * the platform's native byte order. + * + * \param val value to convert + * \return converted value. + */ +PHYSFS_DECL PHYSFS_uint32 PHYSFS_swapULE32(PHYSFS_uint32 val); + +/** + * \fn PHYSFS_sint64 PHYSFS_swapSLE64(PHYSFS_sint64 val) + * \brief Swap littleendian signed 64 to platform's native byte order. + * + * Take a 64-bit signed value in littleendian format and convert it to + * the platform's native byte order. + * + * \param val value to convert + * \return converted value. + * + * \warning Remember, PHYSFS_uint64 is only 32 bits on platforms without + * any sort of 64-bit support. + */ +PHYSFS_DECL PHYSFS_sint64 PHYSFS_swapSLE64(PHYSFS_sint64 val); + + +/** + * \fn PHYSFS_uint64 PHYSFS_swapULE64(PHYSFS_uint64 val) + * \brief Swap littleendian unsigned 64 to platform's native byte order. + * + * Take a 64-bit unsigned value in littleendian format and convert it to + * the platform's native byte order. + * + * \param val value to convert + * \return converted value. + * + * \warning Remember, PHYSFS_uint64 is only 32 bits on platforms without + * any sort of 64-bit support. + */ +PHYSFS_DECL PHYSFS_uint64 PHYSFS_swapULE64(PHYSFS_uint64 val); + + +/** + * \fn PHYSFS_sint16 PHYSFS_swapSBE16(PHYSFS_sint16 val) + * \brief Swap bigendian signed 16 to platform's native byte order. + * + * Take a 16-bit signed value in bigendian format and convert it to + * the platform's native byte order. + * + * \param val value to convert + * \return converted value. + */ +PHYSFS_DECL PHYSFS_sint16 PHYSFS_swapSBE16(PHYSFS_sint16 val); + + +/** + * \fn PHYSFS_uint16 PHYSFS_swapUBE16(PHYSFS_uint16 val) + * \brief Swap bigendian unsigned 16 to platform's native byte order. + * + * Take a 16-bit unsigned value in bigendian format and convert it to + * the platform's native byte order. + * + * \param val value to convert + * \return converted value. + */ +PHYSFS_DECL PHYSFS_uint16 PHYSFS_swapUBE16(PHYSFS_uint16 val); + +/** + * \fn PHYSFS_sint32 PHYSFS_swapSBE32(PHYSFS_sint32 val) + * \brief Swap bigendian signed 32 to platform's native byte order. + * + * Take a 32-bit signed value in bigendian format and convert it to + * the platform's native byte order. + * + * \param val value to convert + * \return converted value. + */ +PHYSFS_DECL PHYSFS_sint32 PHYSFS_swapSBE32(PHYSFS_sint32 val); + + +/** + * \fn PHYSFS_uint32 PHYSFS_swapUBE32(PHYSFS_uint32 val) + * \brief Swap bigendian unsigned 32 to platform's native byte order. + * + * Take a 32-bit unsigned value in bigendian format and convert it to + * the platform's native byte order. + * + * \param val value to convert + * \return converted value. + */ +PHYSFS_DECL PHYSFS_uint32 PHYSFS_swapUBE32(PHYSFS_uint32 val); + + +/** + * \fn PHYSFS_sint64 PHYSFS_swapSBE64(PHYSFS_sint64 val) + * \brief Swap bigendian signed 64 to platform's native byte order. + * + * Take a 64-bit signed value in bigendian format and convert it to + * the platform's native byte order. + * + * \param val value to convert + * \return converted value. + * + * \warning Remember, PHYSFS_uint64 is only 32 bits on platforms without + * any sort of 64-bit support. + */ +PHYSFS_DECL PHYSFS_sint64 PHYSFS_swapSBE64(PHYSFS_sint64 val); + + +/** + * \fn PHYSFS_uint64 PHYSFS_swapUBE64(PHYSFS_uint64 val) + * \brief Swap bigendian unsigned 64 to platform's native byte order. + * + * Take a 64-bit unsigned value in bigendian format and convert it to + * the platform's native byte order. + * + * \param val value to convert + * \return converted value. + * + * \warning Remember, PHYSFS_uint64 is only 32 bits on platforms without + * any sort of 64-bit support. + */ +PHYSFS_DECL PHYSFS_uint64 PHYSFS_swapUBE64(PHYSFS_uint64 val); + +#endif /* SWIG */ + + +/** + * \fn int PHYSFS_readSLE16(PHYSFS_File *file, PHYSFS_sint16 *val) + * \brief Read and convert a signed 16-bit littleendian value. + * + * Convenience function. Read a signed 16-bit littleendian value from a + * file and convert it to the platform's native byte order. + * + * \param file PhysicsFS file handle from which to read. + * \param val pointer to where value should be stored. + * \return zero on failure, non-zero on success. If successful, (*val) will + * store the result. On failure, you can find out what went wrong + * from PHYSFS_getLastError(). + */ +PHYSFS_DECL int PHYSFS_readSLE16(PHYSFS_File *file, PHYSFS_sint16 *val); + + +/** + * \fn int PHYSFS_readULE16(PHYSFS_File *file, PHYSFS_uint16 *val) + * \brief Read and convert an unsigned 16-bit littleendian value. + * + * Convenience function. Read an unsigned 16-bit littleendian value from a + * file and convert it to the platform's native byte order. + * + * \param file PhysicsFS file handle from which to read. + * \param val pointer to where value should be stored. + * \return zero on failure, non-zero on success. If successful, (*val) will + * store the result. On failure, you can find out what went wrong + * from PHYSFS_getLastError(). + * + */ +PHYSFS_DECL int PHYSFS_readULE16(PHYSFS_File *file, PHYSFS_uint16 *val); + + +/** + * \fn int PHYSFS_readSBE16(PHYSFS_File *file, PHYSFS_sint16 *val) + * \brief Read and convert a signed 16-bit bigendian value. + * + * Convenience function. Read a signed 16-bit bigendian value from a + * file and convert it to the platform's native byte order. + * + * \param file PhysicsFS file handle from which to read. + * \param val pointer to where value should be stored. + * \return zero on failure, non-zero on success. If successful, (*val) will + * store the result. On failure, you can find out what went wrong + * from PHYSFS_getLastError(). + */ +PHYSFS_DECL int PHYSFS_readSBE16(PHYSFS_File *file, PHYSFS_sint16 *val); + + +/** + * \fn int PHYSFS_readUBE16(PHYSFS_File *file, PHYSFS_uint16 *val) + * \brief Read and convert an unsigned 16-bit bigendian value. + * + * Convenience function. Read an unsigned 16-bit bigendian value from a + * file and convert it to the platform's native byte order. + * + * \param file PhysicsFS file handle from which to read. + * \param val pointer to where value should be stored. + * \return zero on failure, non-zero on success. If successful, (*val) will + * store the result. On failure, you can find out what went wrong + * from PHYSFS_getLastError(). + * + */ +PHYSFS_DECL int PHYSFS_readUBE16(PHYSFS_File *file, PHYSFS_uint16 *val); + + +/** + * \fn int PHYSFS_readSLE32(PHYSFS_File *file, PHYSFS_sint32 *val) + * \brief Read and convert a signed 32-bit littleendian value. + * + * Convenience function. Read a signed 32-bit littleendian value from a + * file and convert it to the platform's native byte order. + * + * \param file PhysicsFS file handle from which to read. + * \param val pointer to where value should be stored. + * \return zero on failure, non-zero on success. If successful, (*val) will + * store the result. On failure, you can find out what went wrong + * from PHYSFS_getLastError(). + */ +PHYSFS_DECL int PHYSFS_readSLE32(PHYSFS_File *file, PHYSFS_sint32 *val); + + +/** + * \fn int PHYSFS_readULE32(PHYSFS_File *file, PHYSFS_uint32 *val) + * \brief Read and convert an unsigned 32-bit littleendian value. + * + * Convenience function. Read an unsigned 32-bit littleendian value from a + * file and convert it to the platform's native byte order. + * + * \param file PhysicsFS file handle from which to read. + * \param val pointer to where value should be stored. + * \return zero on failure, non-zero on success. If successful, (*val) will + * store the result. On failure, you can find out what went wrong + * from PHYSFS_getLastError(). + * + */ +PHYSFS_DECL int PHYSFS_readULE32(PHYSFS_File *file, PHYSFS_uint32 *val); + + +/** + * \fn int PHYSFS_readSBE32(PHYSFS_File *file, PHYSFS_sint32 *val) + * \brief Read and convert a signed 32-bit bigendian value. + * + * Convenience function. Read a signed 32-bit bigendian value from a + * file and convert it to the platform's native byte order. + * + * \param file PhysicsFS file handle from which to read. + * \param val pointer to where value should be stored. + * \return zero on failure, non-zero on success. If successful, (*val) will + * store the result. On failure, you can find out what went wrong + * from PHYSFS_getLastError(). + */ +PHYSFS_DECL int PHYSFS_readSBE32(PHYSFS_File *file, PHYSFS_sint32 *val); + + +/** + * \fn int PHYSFS_readUBE32(PHYSFS_File *file, PHYSFS_uint32 *val) + * \brief Read and convert an unsigned 32-bit bigendian value. + * + * Convenience function. Read an unsigned 32-bit bigendian value from a + * file and convert it to the platform's native byte order. + * + * \param file PhysicsFS file handle from which to read. + * \param val pointer to where value should be stored. + * \return zero on failure, non-zero on success. If successful, (*val) will + * store the result. On failure, you can find out what went wrong + * from PHYSFS_getLastError(). + * + */ +PHYSFS_DECL int PHYSFS_readUBE32(PHYSFS_File *file, PHYSFS_uint32 *val); + + +/** + * \fn int PHYSFS_readSLE64(PHYSFS_File *file, PHYSFS_sint64 *val) + * \brief Read and convert a signed 64-bit littleendian value. + * + * Convenience function. Read a signed 64-bit littleendian value from a + * file and convert it to the platform's native byte order. + * + * \param file PhysicsFS file handle from which to read. + * \param val pointer to where value should be stored. + * \return zero on failure, non-zero on success. If successful, (*val) will + * store the result. On failure, you can find out what went wrong + * from PHYSFS_getLastError(). + * + * \warning Remember, PHYSFS_sint64 is only 32 bits on platforms without + * any sort of 64-bit support. + */ +PHYSFS_DECL int PHYSFS_readSLE64(PHYSFS_File *file, PHYSFS_sint64 *val); + + +/** + * \fn int PHYSFS_readULE64(PHYSFS_File *file, PHYSFS_uint64 *val) + * \brief Read and convert an unsigned 64-bit littleendian value. + * + * Convenience function. Read an unsigned 64-bit littleendian value from a + * file and convert it to the platform's native byte order. + * + * \param file PhysicsFS file handle from which to read. + * \param val pointer to where value should be stored. + * \return zero on failure, non-zero on success. If successful, (*val) will + * store the result. On failure, you can find out what went wrong + * from PHYSFS_getLastError(). + * + * \warning Remember, PHYSFS_uint64 is only 32 bits on platforms without + * any sort of 64-bit support. + */ +PHYSFS_DECL int PHYSFS_readULE64(PHYSFS_File *file, PHYSFS_uint64 *val); + + +/** + * \fn int PHYSFS_readSBE64(PHYSFS_File *file, PHYSFS_sint64 *val) + * \brief Read and convert a signed 64-bit bigendian value. + * + * Convenience function. Read a signed 64-bit bigendian value from a + * file and convert it to the platform's native byte order. + * + * \param file PhysicsFS file handle from which to read. + * \param val pointer to where value should be stored. + * \return zero on failure, non-zero on success. If successful, (*val) will + * store the result. On failure, you can find out what went wrong + * from PHYSFS_getLastError(). + * + * \warning Remember, PHYSFS_sint64 is only 32 bits on platforms without + * any sort of 64-bit support. + */ +PHYSFS_DECL int PHYSFS_readSBE64(PHYSFS_File *file, PHYSFS_sint64 *val); + + +/** + * \fn int PHYSFS_readUBE64(PHYSFS_File *file, PHYSFS_uint64 *val) + * \brief Read and convert an unsigned 64-bit bigendian value. + * + * Convenience function. Read an unsigned 64-bit bigendian value from a + * file and convert it to the platform's native byte order. + * + * \param file PhysicsFS file handle from which to read. + * \param val pointer to where value should be stored. + * \return zero on failure, non-zero on success. If successful, (*val) will + * store the result. On failure, you can find out what went wrong + * from PHYSFS_getLastError(). + * + * \warning Remember, PHYSFS_uint64 is only 32 bits on platforms without + * any sort of 64-bit support. + */ +PHYSFS_DECL int PHYSFS_readUBE64(PHYSFS_File *file, PHYSFS_uint64 *val); + + +/** + * \fn int PHYSFS_writeSLE16(PHYSFS_File *file, PHYSFS_sint16 val) + * \brief Convert and write a signed 16-bit littleendian value. + * + * Convenience function. Convert a signed 16-bit value from the platform's + * native byte order to littleendian and write it to a file. + * + * \param file PhysicsFS file handle to which to write. + * \param val Value to convert and write. + * \return zero on failure, non-zero on success. On failure, you can + * find out what went wrong from PHYSFS_getLastError(). + */ +PHYSFS_DECL int PHYSFS_writeSLE16(PHYSFS_File *file, PHYSFS_sint16 val); + + +/** + * \fn int PHYSFS_writeULE16(PHYSFS_File *file, PHYSFS_uint16 val) + * \brief Convert and write an unsigned 16-bit littleendian value. + * + * Convenience function. Convert an unsigned 16-bit value from the platform's + * native byte order to littleendian and write it to a file. + * + * \param file PhysicsFS file handle to which to write. + * \param val Value to convert and write. + * \return zero on failure, non-zero on success. On failure, you can + * find out what went wrong from PHYSFS_getLastError(). + */ +PHYSFS_DECL int PHYSFS_writeULE16(PHYSFS_File *file, PHYSFS_uint16 val); + + +/** + * \fn int PHYSFS_writeSBE16(PHYSFS_File *file, PHYSFS_sint16 val) + * \brief Convert and write a signed 16-bit bigendian value. + * + * Convenience function. Convert a signed 16-bit value from the platform's + * native byte order to bigendian and write it to a file. + * + * \param file PhysicsFS file handle to which to write. + * \param val Value to convert and write. + * \return zero on failure, non-zero on success. On failure, you can + * find out what went wrong from PHYSFS_getLastError(). + */ +PHYSFS_DECL int PHYSFS_writeSBE16(PHYSFS_File *file, PHYSFS_sint16 val); + + +/** + * \fn int PHYSFS_writeUBE16(PHYSFS_File *file, PHYSFS_uint16 val) + * \brief Convert and write an unsigned 16-bit bigendian value. + * + * Convenience function. Convert an unsigned 16-bit value from the platform's + * native byte order to bigendian and write it to a file. + * + * \param file PhysicsFS file handle to which to write. + * \param val Value to convert and write. + * \return zero on failure, non-zero on success. On failure, you can + * find out what went wrong from PHYSFS_getLastError(). + */ +PHYSFS_DECL int PHYSFS_writeUBE16(PHYSFS_File *file, PHYSFS_uint16 val); + + +/** + * \fn int PHYSFS_writeSLE32(PHYSFS_File *file, PHYSFS_sint32 val) + * \brief Convert and write a signed 32-bit littleendian value. + * + * Convenience function. Convert a signed 32-bit value from the platform's + * native byte order to littleendian and write it to a file. + * + * \param file PhysicsFS file handle to which to write. + * \param val Value to convert and write. + * \return zero on failure, non-zero on success. On failure, you can + * find out what went wrong from PHYSFS_getLastError(). + */ +PHYSFS_DECL int PHYSFS_writeSLE32(PHYSFS_File *file, PHYSFS_sint32 val); + + +/** + * \fn int PHYSFS_writeULE32(PHYSFS_File *file, PHYSFS_uint32 val) + * \brief Convert and write an unsigned 32-bit littleendian value. + * + * Convenience function. Convert an unsigned 32-bit value from the platform's + * native byte order to littleendian and write it to a file. + * + * \param file PhysicsFS file handle to which to write. + * \param val Value to convert and write. + * \return zero on failure, non-zero on success. On failure, you can + * find out what went wrong from PHYSFS_getLastError(). + */ +PHYSFS_DECL int PHYSFS_writeULE32(PHYSFS_File *file, PHYSFS_uint32 val); + + +/** + * \fn int PHYSFS_writeSBE32(PHYSFS_File *file, PHYSFS_sint32 val) + * \brief Convert and write a signed 32-bit bigendian value. + * + * Convenience function. Convert a signed 32-bit value from the platform's + * native byte order to bigendian and write it to a file. + * + * \param file PhysicsFS file handle to which to write. + * \param val Value to convert and write. + * \return zero on failure, non-zero on success. On failure, you can + * find out what went wrong from PHYSFS_getLastError(). + */ +PHYSFS_DECL int PHYSFS_writeSBE32(PHYSFS_File *file, PHYSFS_sint32 val); + + +/** + * \fn int PHYSFS_writeUBE32(PHYSFS_File *file, PHYSFS_uint32 val) + * \brief Convert and write an unsigned 32-bit bigendian value. + * + * Convenience function. Convert an unsigned 32-bit value from the platform's + * native byte order to bigendian and write it to a file. + * + * \param file PhysicsFS file handle to which to write. + * \param val Value to convert and write. + * \return zero on failure, non-zero on success. On failure, you can + * find out what went wrong from PHYSFS_getLastError(). + */ +PHYSFS_DECL int PHYSFS_writeUBE32(PHYSFS_File *file, PHYSFS_uint32 val); + + +/** + * \fn int PHYSFS_writeSLE64(PHYSFS_File *file, PHYSFS_sint64 val) + * \brief Convert and write a signed 64-bit littleendian value. + * + * Convenience function. Convert a signed 64-bit value from the platform's + * native byte order to littleendian and write it to a file. + * + * \param file PhysicsFS file handle to which to write. + * \param val Value to convert and write. + * \return zero on failure, non-zero on success. On failure, you can + * find out what went wrong from PHYSFS_getLastError(). + * + * \warning Remember, PHYSFS_uint64 is only 32 bits on platforms without + * any sort of 64-bit support. + */ +PHYSFS_DECL int PHYSFS_writeSLE64(PHYSFS_File *file, PHYSFS_sint64 val); + + +/** + * \fn int PHYSFS_writeULE64(PHYSFS_File *file, PHYSFS_uint64 val) + * \brief Convert and write an unsigned 64-bit littleendian value. + * + * Convenience function. Convert an unsigned 64-bit value from the platform's + * native byte order to littleendian and write it to a file. + * + * \param file PhysicsFS file handle to which to write. + * \param val Value to convert and write. + * \return zero on failure, non-zero on success. On failure, you can + * find out what went wrong from PHYSFS_getLastError(). + * + * \warning Remember, PHYSFS_uint64 is only 32 bits on platforms without + * any sort of 64-bit support. + */ +PHYSFS_DECL int PHYSFS_writeULE64(PHYSFS_File *file, PHYSFS_uint64 val); + + +/** + * \fn int PHYSFS_writeSBE64(PHYSFS_File *file, PHYSFS_sint64 val) + * \brief Convert and write a signed 64-bit bigending value. + * + * Convenience function. Convert a signed 64-bit value from the platform's + * native byte order to bigendian and write it to a file. + * + * \param file PhysicsFS file handle to which to write. + * \param val Value to convert and write. + * \return zero on failure, non-zero on success. On failure, you can + * find out what went wrong from PHYSFS_getLastError(). + * + * \warning Remember, PHYSFS_uint64 is only 32 bits on platforms without + * any sort of 64-bit support. + */ +PHYSFS_DECL int PHYSFS_writeSBE64(PHYSFS_File *file, PHYSFS_sint64 val); + + +/** + * \fn int PHYSFS_writeUBE64(PHYSFS_File *file, PHYSFS_uint64 val) + * \brief Convert and write an unsigned 64-bit bigendian value. + * + * Convenience function. Convert an unsigned 64-bit value from the platform's + * native byte order to bigendian and write it to a file. + * + * \param file PhysicsFS file handle to which to write. + * \param val Value to convert and write. + * \return zero on failure, non-zero on success. On failure, you can + * find out what went wrong from PHYSFS_getLastError(). + * + * \warning Remember, PHYSFS_uint64 is only 32 bits on platforms without + * any sort of 64-bit support. + */ +PHYSFS_DECL int PHYSFS_writeUBE64(PHYSFS_File *file, PHYSFS_uint64 val); + + +/* Everything above this line is part of the PhysicsFS 1.0 API. */ + +/** + * \fn int PHYSFS_isInit(void) + * \brief Determine if the PhysicsFS library is initialized. + * + * Once PHYSFS_init() returns successfully, this will return non-zero. + * Before a successful PHYSFS_init() and after PHYSFS_deinit() returns + * successfully, this will return zero. This function is safe to call at + * any time. + * + * \return non-zero if library is initialized, zero if library is not. + * + * \sa PHYSFS_init + * \sa PHYSFS_deinit + */ +PHYSFS_DECL int PHYSFS_isInit(void); + + +/** + * \fn int PHYSFS_symbolicLinksPermitted(void) + * \brief Determine if the symbolic links are permitted. + * + * This reports the setting from the last call to PHYSFS_permitSymbolicLinks(). + * If PHYSFS_permitSymbolicLinks() hasn't been called since the library was + * last initialized, symbolic links are implicitly disabled. + * + * \return non-zero if symlinks are permitted, zero if not. + * + * \sa PHYSFS_permitSymbolicLinks + */ +PHYSFS_DECL int PHYSFS_symbolicLinksPermitted(void); + + +#ifndef SWIG /* not available from scripting languages. */ + +/** + * \struct PHYSFS_Allocator + * \brief PhysicsFS allocation function pointers. + * + * (This is for limited, hardcore use. If you don't immediately see a need + * for it, you can probably ignore this forever.) + * + * You create one of these structures for use with PHYSFS_setAllocator. + * Allocators are assumed to be reentrant by the caller; please mutex + * accordingly. + * + * Allocations are always discussed in 64-bits, for future expansion...we're + * on the cusp of a 64-bit transition, and we'll probably be allocating 6 + * gigabytes like it's nothing sooner or later, and I don't want to change + * this again at that point. If you're on a 32-bit platform and have to + * downcast, it's okay to return NULL if the allocation is greater than + * 4 gigabytes, since you'd have to do so anyhow. + * + * \sa PHYSFS_setAllocator + */ +typedef struct PHYSFS_Allocator +{ + int (*Init)(void); /**< Initialize. Can be NULL. Zero on failure. */ + void (*Deinit)(void); /**< Deinitialize your allocator. Can be NULL. */ + void *(*Malloc)(PHYSFS_uint64); /**< Allocate like malloc(). */ + void *(*Realloc)(void *, PHYSFS_uint64); /**< Reallocate like realloc(). */ + void (*Free)(void *); /**< Free memory from Malloc or Realloc. */ +} PHYSFS_Allocator; + + +/** + * \fn int PHYSFS_setAllocator(const PHYSFS_Allocator *allocator) + * \brief Hook your own allocation routines into PhysicsFS. + * + * (This is for limited, hardcore use. If you don't immediately see a need + * for it, you can probably ignore this forever.) + * + * By default, PhysicsFS will use whatever is reasonable for a platform + * to manage dynamic memory (usually ANSI C malloc/realloc/free, but + * some platforms might use something else), but in some uncommon cases, the + * app might want more control over the library's memory management. This + * lets you redirect PhysicsFS to use your own allocation routines instead. + * You can only call this function before PHYSFS_init(); if the library is + * initialized, it'll reject your efforts to change the allocator mid-stream. + * You may call this function after PHYSFS_deinit() if you are willing to + * shut down the library and restart it with a new allocator; this is a safe + * and supported operation. The allocator remains intact between deinit/init + * calls. If you want to return to the platform's default allocator, pass a + * NULL in here. + * + * If you aren't immediately sure what to do with this function, you can + * safely ignore it altogether. + * + * \param allocator Structure containing your allocator's entry points. + * \return zero on failure, non-zero on success. This call only fails + * when used between PHYSFS_init() and PHYSFS_deinit() calls. + */ +PHYSFS_DECL int PHYSFS_setAllocator(const PHYSFS_Allocator *allocator); + +#endif /* SWIG */ + + +/** + * \fn int PHYSFS_mount(const char *newDir, const char *mountPoint, int appendToPath) + * \brief Add an archive or directory to the search path. + * + * If this is a duplicate, the entry is not added again, even though the + * function succeeds. You may not add the same archive to two different + * mountpoints: duplicate checking is done against the archive and not the + * mountpoint. + * + * When you mount an archive, it is added to a virtual file system...all files + * in all of the archives are interpolated into a single hierachical file + * tree. Two archives mounted at the same place (or an archive with files + * overlapping another mountpoint) may have overlapping files: in such a case, + * the file earliest in the search path is selected, and the other files are + * inaccessible to the application. This allows archives to be used to + * override previous revisions; you can use the mounting mechanism to place + * archives at a specific point in the file tree and prevent overlap; this + * is useful for downloadable mods that might trample over application data + * or each other, for example. + * + * The mountpoint does not need to exist prior to mounting, which is different + * than those familiar with the Unix concept of "mounting" may not expect. + * As well, more than one archive can be mounted to the same mountpoint, or + * mountpoints and archive contents can overlap...the interpolation mechanism + * still functions as usual. + * + * \param newDir directory or archive to add to the path, in + * platform-dependent notation. + * \param mountPoint Location in the interpolated tree that this archive + * will be "mounted", in platform-independent notation. + * NULL or "" is equivalent to "/". + * \param appendToPath nonzero to append to search path, zero to prepend. + * \return nonzero if added to path, zero on failure (bogus archive, dir + * missing, etc). Specifics of the error can be + * gleaned from PHYSFS_getLastError(). + * + * \sa PHYSFS_removeFromSearchPath + * \sa PHYSFS_getSearchPath + * \sa PHYSFS_getMountPoint + * \sa PHYSFS_mountIo + */ +PHYSFS_DECL int PHYSFS_mount(const char *newDir, + const char *mountPoint, + int appendToPath); + +/** + * \fn int PHYSFS_getMountPoint(const char *dir) + * \brief Determine a mounted archive's mountpoint. + * + * You give this function the name of an archive or dir you successfully + * added to the search path, and it reports the location in the interpolated + * tree where it is mounted. Files mounted with a NULL mountpoint or through + * PHYSFS_addToSearchPath() will report "/". The return value is READ ONLY + * and valid until the archive is removed from the search path. + * + * \param dir directory or archive previously added to the path, in + * platform-dependent notation. This must match the string + * used when adding, even if your string would also reference + * the same file with a different string of characters. + * \return READ-ONLY string of mount point if added to path, NULL on failure + * (bogus archive, etc) Specifics of the error can be gleaned from + * PHYSFS_getLastError(). + * + * \sa PHYSFS_removeFromSearchPath + * \sa PHYSFS_getSearchPath + * \sa PHYSFS_getMountPoint + */ +PHYSFS_DECL const char *PHYSFS_getMountPoint(const char *dir); + + +#ifndef SWIG /* not available from scripting languages. */ + +/** + * \typedef PHYSFS_StringCallback + * \brief Function signature for callbacks that report strings. + * + * These are used to report a list of strings to an original caller, one + * string per callback. All strings are UTF-8 encoded. Functions should not + * try to modify or free the string's memory. + * + * These callbacks are used, starting in PhysicsFS 1.1, as an alternative to + * functions that would return lists that need to be cleaned up with + * PHYSFS_freeList(). The callback means that the library doesn't need to + * allocate an entire list and all the strings up front. + * + * Be aware that promises data ordering in the list versions are not + * necessarily so in the callback versions. Check the documentation on + * specific APIs, but strings may not be sorted as you expect. + * + * \param data User-defined data pointer, passed through from the API + * that eventually called the callback. + * \param str The string data about which the callback is meant to inform. + * + * \sa PHYSFS_getCdRomDirsCallback + * \sa PHYSFS_getSearchPathCallback + */ +typedef void (*PHYSFS_StringCallback)(void *data, const char *str); + + +/** + * \typedef PHYSFS_EnumFilesCallback + * \brief Function signature for callbacks that enumerate files. + * + * These are used to report a list of directory entries to an original caller, + * one file/dir/symlink per callback. All strings are UTF-8 encoded. + * Functions should not try to modify or free any string's memory. + * + * These callbacks are used, starting in PhysicsFS 1.1, as an alternative to + * functions that would return lists that need to be cleaned up with + * PHYSFS_freeList(). The callback means that the library doesn't need to + * allocate an entire list and all the strings up front. + * + * Be aware that promises data ordering in the list versions are not + * necessarily so in the callback versions. Check the documentation on + * specific APIs, but strings may not be sorted as you expect. + * + * \param data User-defined data pointer, passed through from the API + * that eventually called the callback. + * \param origdir A string containing the full path, in platform-independent + * notation, of the directory containing this file. In most + * cases, this is the directory on which you requested + * enumeration, passed in the callback for your convenience. + * \param fname The filename that is being enumerated. It may not be in + * alphabetical order compared to other callbacks that have + * fired, and it will not contain the full path. You can + * recreate the fullpath with $origdir/$fname ... The file + * can be a subdirectory, a file, a symlink, etc. + * + * \sa PHYSFS_enumerateFilesCallback + */ +typedef void (*PHYSFS_EnumFilesCallback)(void *data, const char *origdir, + const char *fname); + + +/** + * \fn void PHYSFS_getCdRomDirsCallback(PHYSFS_StringCallback c, void *d) + * \brief Enumerate CD-ROM directories, using an application-defined callback. + * + * Internally, PHYSFS_getCdRomDirs() just calls this function and then builds + * a list before returning to the application, so functionality is identical + * except for how the information is represented to the application. + * + * Unlike PHYSFS_getCdRomDirs(), this function does not return an array. + * Rather, it calls a function specified by the application once per + * detected disc: + * + * \code + * + * static void foundDisc(void *data, const char *cddir) + * { + * printf("cdrom dir [%s] is available.\n", cddir); + * } + * + * // ... + * PHYSFS_getCdRomDirsCallback(foundDisc, NULL); + * \endcode + * + * This call may block while drives spin up. Be forewarned. + * + * \param c Callback function to notify about detected drives. + * \param d Application-defined data passed to callback. Can be NULL. + * + * \sa PHYSFS_StringCallback + * \sa PHYSFS_getCdRomDirs + */ +PHYSFS_DECL void PHYSFS_getCdRomDirsCallback(PHYSFS_StringCallback c, void *d); + + +/** + * \fn void PHYSFS_getSearchPathCallback(PHYSFS_StringCallback c, void *d) + * \brief Enumerate the search path, using an application-defined callback. + * + * Internally, PHYSFS_getSearchPath() just calls this function and then builds + * a list before returning to the application, so functionality is identical + * except for how the information is represented to the application. + * + * Unlike PHYSFS_getSearchPath(), this function does not return an array. + * Rather, it calls a function specified by the application once per + * element of the search path: + * + * \code + * + * static void printSearchPath(void *data, const char *pathItem) + * { + * printf("[%s] is in the search path.\n", pathItem); + * } + * + * // ... + * PHYSFS_getSearchPathCallback(printSearchPath, NULL); + * \endcode + * + * Elements of the search path are reported in order search priority, so the + * first archive/dir that would be examined when looking for a file is the + * first element passed through the callback. + * + * \param c Callback function to notify about search path elements. + * \param d Application-defined data passed to callback. Can be NULL. + * + * \sa PHYSFS_StringCallback + * \sa PHYSFS_getSearchPath + */ +PHYSFS_DECL void PHYSFS_getSearchPathCallback(PHYSFS_StringCallback c, void *d); + + +/** + * \fn void PHYSFS_enumerateFilesCallback(const char *dir, PHYSFS_EnumFilesCallback c, void *d) + * \brief Get a file listing of a search path's directory, using an application-defined callback. + * + * Internally, PHYSFS_enumerateFiles() just calls this function and then builds + * a list before returning to the application, so functionality is identical + * except for how the information is represented to the application. + * + * Unlike PHYSFS_enumerateFiles(), this function does not return an array. + * Rather, it calls a function specified by the application once per + * element of the search path: + * + * \code + * + * static void printDir(void *data, const char *origdir, const char *fname) + * { + * printf(" * We've got [%s] in [%s].\n", fname, origdir); + * } + * + * // ... + * PHYSFS_enumerateFilesCallback("/some/path", printDir, NULL); + * \endcode + * + * !!! FIXME: enumerateFiles() does not promise alphabetical sorting by + * !!! FIXME: case-sensitivity in the code, and doesn't promise sorting at + * !!! FIXME: all in the above docs. + * + * Items sent to the callback are not guaranteed to be in any order whatsoever. + * There is no sorting done at this level, and if you need that, you should + * probably use PHYSFS_enumerateFiles() instead, which guarantees + * alphabetical sorting. This form reports whatever is discovered in each + * archive before moving on to the next. Even within one archive, we can't + * guarantee what order it will discover data. Any sorting you find in + * these callbacks is just pure luck. Do not rely on it. As this walks + * the entire list of archives, you may receive duplicate filenames. + * + * \param dir Directory, in platform-independent notation, to enumerate. + * \param c Callback function to notify about search path elements. + * \param d Application-defined data passed to callback. Can be NULL. + * + * \sa PHYSFS_EnumFilesCallback + * \sa PHYSFS_enumerateFiles + */ +PHYSFS_DECL void PHYSFS_enumerateFilesCallback(const char *dir, + PHYSFS_EnumFilesCallback c, + void *d); + +/** + * \fn void PHYSFS_utf8FromUcs4(const PHYSFS_uint32 *src, char *dst, PHYSFS_uint64 len) + * \brief Convert a UCS-4 string to a UTF-8 string. + * + * UCS-4 strings are 32-bits per character: \c wchar_t on Unix. + * + * To ensure that the destination buffer is large enough for the conversion, + * please allocate a buffer that is the same size as the source buffer. UTF-8 + * never uses more than 32-bits per character, so while it may shrink a UCS-4 + * string, it will never expand it. + * + * Strings that don't fit in the destination buffer will be truncated, but + * will always be null-terminated and never have an incomplete UTF-8 + * sequence at the end. If the buffer length is 0, this function does nothing. + * + * \param src Null-terminated source string in UCS-4 format. + * \param dst Buffer to store converted UTF-8 string. + * \param len Size, in bytes, of destination buffer. + */ +PHYSFS_DECL void PHYSFS_utf8FromUcs4(const PHYSFS_uint32 *src, char *dst, + PHYSFS_uint64 len); + +/** + * \fn void PHYSFS_utf8ToUcs4(const char *src, PHYSFS_uint32 *dst, PHYSFS_uint64 len) + * \brief Convert a UTF-8 string to a UCS-4 string. + * + * UCS-4 strings are 32-bits per character: \c wchar_t on Unix. + * + * To ensure that the destination buffer is large enough for the conversion, + * please allocate a buffer that is four times the size of the source buffer. + * UTF-8 uses from one to four bytes per character, but UCS-4 always uses + * four, so an entirely low-ASCII string will quadruple in size! + * + * Strings that don't fit in the destination buffer will be truncated, but + * will always be null-terminated and never have an incomplete UCS-4 + * sequence at the end. If the buffer length is 0, this function does nothing. + * + * \param src Null-terminated source string in UTF-8 format. + * \param dst Buffer to store converted UCS-4 string. + * \param len Size, in bytes, of destination buffer. + */ +PHYSFS_DECL void PHYSFS_utf8ToUcs4(const char *src, PHYSFS_uint32 *dst, + PHYSFS_uint64 len); + +/** + * \fn void PHYSFS_utf8FromUcs2(const PHYSFS_uint16 *src, char *dst, PHYSFS_uint64 len) + * \brief Convert a UCS-2 string to a UTF-8 string. + * + * \warning you almost certainly should use PHYSFS_utf8FromUtf16(), which + * became available in PhysicsFS 2.1, unless you know what you're doing. + * + * UCS-2 strings are 16-bits per character: \c TCHAR on Windows, when building + * with Unicode support. Please note that modern versions of Windows use + * UTF-16, which is an extended form of UCS-2, and not UCS-2 itself. You + * almost certainly want PHYSFS_utf8FromUtf16() instead. + * + * To ensure that the destination buffer is large enough for the conversion, + * please allocate a buffer that is double the size of the source buffer. + * UTF-8 never uses more than 32-bits per character, so while it may shrink + * a UCS-2 string, it may also expand it. + * + * Strings that don't fit in the destination buffer will be truncated, but + * will always be null-terminated and never have an incomplete UTF-8 + * sequence at the end. If the buffer length is 0, this function does nothing. + * + * \param src Null-terminated source string in UCS-2 format. + * \param dst Buffer to store converted UTF-8 string. + * \param len Size, in bytes, of destination buffer. + * + * \sa PHYSFS_utf8FromUtf16 + */ +PHYSFS_DECL void PHYSFS_utf8FromUcs2(const PHYSFS_uint16 *src, char *dst, + PHYSFS_uint64 len); + +/** + * \fn PHYSFS_utf8ToUcs2(const char *src, PHYSFS_uint16 *dst, PHYSFS_uint64 len) + * \brief Convert a UTF-8 string to a UCS-2 string. + * + * \warning you almost certainly should use PHYSFS_utf8ToUtf16(), which + * became available in PhysicsFS 2.1, unless you know what you're doing. + * + * UCS-2 strings are 16-bits per character: \c TCHAR on Windows, when building + * with Unicode support. Please note that modern versions of Windows use + * UTF-16, which is an extended form of UCS-2, and not UCS-2 itself. You + * almost certainly want PHYSFS_utf8ToUtf16() instead, but you need to + * understand how that changes things, too. + * + * To ensure that the destination buffer is large enough for the conversion, + * please allocate a buffer that is double the size of the source buffer. + * UTF-8 uses from one to four bytes per character, but UCS-2 always uses + * two, so an entirely low-ASCII string will double in size! + * + * Strings that don't fit in the destination buffer will be truncated, but + * will always be null-terminated and never have an incomplete UCS-2 + * sequence at the end. If the buffer length is 0, this function does nothing. + * + * \param src Null-terminated source string in UTF-8 format. + * \param dst Buffer to store converted UCS-2 string. + * \param len Size, in bytes, of destination buffer. + * + * \sa PHYSFS_utf8ToUtf16 + */ +PHYSFS_DECL void PHYSFS_utf8ToUcs2(const char *src, PHYSFS_uint16 *dst, + PHYSFS_uint64 len); + +/** + * \fn void PHYSFS_utf8FromLatin1(const char *src, char *dst, PHYSFS_uint64 len) + * \brief Convert a UTF-8 string to a Latin1 string. + * + * Latin1 strings are 8-bits per character: a popular "high ASCII" encoding. + * + * To ensure that the destination buffer is large enough for the conversion, + * please allocate a buffer that is double the size of the source buffer. + * UTF-8 expands latin1 codepoints over 127 from 1 to 2 bytes, so the string + * may grow in some cases. + * + * Strings that don't fit in the destination buffer will be truncated, but + * will always be null-terminated and never have an incomplete UTF-8 + * sequence at the end. If the buffer length is 0, this function does nothing. + * + * Please note that we do not supply a UTF-8 to Latin1 converter, since Latin1 + * can't express most Unicode codepoints. It's a legacy encoding; you should + * be converting away from it at all times. + * + * \param src Null-terminated source string in Latin1 format. + * \param dst Buffer to store converted UTF-8 string. + * \param len Size, in bytes, of destination buffer. + */ +PHYSFS_DECL void PHYSFS_utf8FromLatin1(const char *src, char *dst, + PHYSFS_uint64 len); + +/* Everything above this line is part of the PhysicsFS 2.0 API. */ + +/** + * \fn int PHYSFS_unmount(const char *oldDir) + * \brief Remove a directory or archive from the search path. + * + * This is functionally equivalent to PHYSFS_removeFromSearchPath(), but that + * function is deprecated to keep the vocabulary paired with PHYSFS_mount(). + * + * This must be a (case-sensitive) match to a dir or archive already in the + * search path, specified in platform-dependent notation. + * + * This call will fail (and fail to remove from the path) if the element still + * has files open in it. + * + * \param oldDir dir/archive to remove. + * \return nonzero on success, zero on failure. + * Specifics of the error can be gleaned from PHYSFS_getLastError(). + * + * \sa PHYSFS_getSearchPath + * \sa PHYSFS_mount + */ +PHYSFS_DECL int PHYSFS_unmount(const char *oldDir); + +/** + * \fn const PHYSFS_Allocator *PHYSFS_getAllocator(void) + * \brief Discover the current allocator. + * + * (This is for limited, hardcore use. If you don't immediately see a need + * for it, you can probably ignore this forever.) + * + * This function exposes the function pointers that make up the currently used + * allocator. This can be useful for apps that want to access PhysicsFS's + * internal, default allocation routines, as well as for external code that + * wants to share the same allocator, even if the application specified their + * own. + * + * This call is only valid between PHYSFS_init() and PHYSFS_deinit() calls; + * it will return NULL if the library isn't initialized. As we can't + * guarantee the state of the internal allocators unless the library is + * initialized, you shouldn't use any allocator returned here after a call + * to PHYSFS_deinit(). + * + * Do not call the returned allocator's Init() or Deinit() methods under any + * circumstances. + * + * If you aren't immediately sure what to do with this function, you can + * safely ignore it altogether. + * + * \return Current allocator, as set by PHYSFS_setAllocator(), or PhysicsFS's + * internal, default allocator if no application defined allocator + * is currently set. Will return NULL if the library is not + * initialized. + * + * \sa PHYSFS_Allocator + * \sa PHYSFS_setAllocator + */ +PHYSFS_DECL const PHYSFS_Allocator *PHYSFS_getAllocator(void); + +#endif /* SWIG */ + +/** + * \enum PHYSFS_FileType + * \brief Type of a File + * + * Possible types of a file. + * + * \sa PHYSFS_stat + */ +typedef enum PHYSFS_FileType +{ + PHYSFS_FILETYPE_REGULAR, /**< a normal file */ + PHYSFS_FILETYPE_DIRECTORY, /**< a directory */ + PHYSFS_FILETYPE_SYMLINK, /**< a symlink */ + PHYSFS_FILETYPE_OTHER /**< something completely different like a device */ +} PHYSFS_FileType; + +/** + * \struct PHYSFS_Stat + * \brief Meta data for a file or directory + * + * Container for various meta data about a file in the virtual file system. + * PHYSFS_stat() uses this structure for returning the information. The time + * data will be either the number of seconds since the Unix epoch (midnight, + * Jan 1, 1970), or -1 if the information isn't available or applicable. + * The (filesize) field is measured in bytes. + * The (readonly) field tells you whether when you open a file for writing you + * are writing to the same file as if you were opening it, given you have + * enough filesystem rights to do that. !!! FIXME: this might change. + * + * \sa PHYSFS_stat + * \sa PHYSFS_FileType + */ +typedef struct PHYSFS_Stat +{ + PHYSFS_sint64 filesize; /**< size in bytes, -1 for non-files and unknown */ + PHYSFS_sint64 modtime; /**< last modification time */ + PHYSFS_sint64 createtime; /**< like modtime, but for file creation time */ + PHYSFS_sint64 accesstime; /**< like modtime, but for file access time */ + PHYSFS_FileType filetype; /**< File? Directory? Symlink? */ + int readonly; /**< non-zero if read only, zero if writable. */ +} PHYSFS_Stat; + +/** + * \fn int PHYSFS_stat(const char *fname, PHYSFS_Stat *stat) + * \brief Get various information about a directory or a file. + * + * Obtain various information about a file or directory from the meta data. + * + * This function will never follow symbolic links. If you haven't enabled + * symlinks with PHYSFS_permitSymbolicLinks(), stat'ing a symlink will be + * treated like stat'ing a non-existant file. If symlinks are enabled, + * stat'ing a symlink will give you information on the link itself and not + * what it points to. + * + * \param fname filename to check, in platform-indepedent notation. + * \param stat pointer to structure to fill in with data about (fname). + * \return non-zero on success, zero on failure. On failure, (stat)'s + * contents are undefined. + * + * \sa PHYSFS_Stat + */ +PHYSFS_DECL int PHYSFS_stat(const char *fname, PHYSFS_Stat *stat); + + +#ifndef SWIG /* not available from scripting languages. */ + +/** + * \fn void PHYSFS_utf8FromUtf16(const PHYSFS_uint16 *src, char *dst, PHYSFS_uint64 len) + * \brief Convert a UTF-16 string to a UTF-8 string. + * + * UTF-16 strings are 16-bits per character (except some chars, which are + * 32-bits): \c TCHAR on Windows, when building with Unicode support. Modern + * Windows releases use UTF-16. Windows releases before 2000 used TCHAR, but + * only handled UCS-2. UTF-16 _is_ UCS-2, except for the characters that + * are 4 bytes, which aren't representable in UCS-2 at all anyhow. If you + * aren't sure, you should be using UTF-16 at this point on Windows. + * + * To ensure that the destination buffer is large enough for the conversion, + * please allocate a buffer that is double the size of the source buffer. + * UTF-8 never uses more than 32-bits per character, so while it may shrink + * a UTF-16 string, it may also expand it. + * + * Strings that don't fit in the destination buffer will be truncated, but + * will always be null-terminated and never have an incomplete UTF-8 + * sequence at the end. If the buffer length is 0, this function does nothing. + * + * \param src Null-terminated source string in UTF-16 format. + * \param dst Buffer to store converted UTF-8 string. + * \param len Size, in bytes, of destination buffer. + */ +PHYSFS_DECL void PHYSFS_utf8FromUtf16(const PHYSFS_uint16 *src, char *dst, + PHYSFS_uint64 len); + +/** + * \fn PHYSFS_utf8ToUtf16(const char *src, PHYSFS_uint16 *dst, PHYSFS_uint64 len) + * \brief Convert a UTF-8 string to a UTF-16 string. + * + * UTF-16 strings are 16-bits per character (except some chars, which are + * 32-bits): \c TCHAR on Windows, when building with Unicode support. Modern + * Windows releases use UTF-16. Windows releases before 2000 used TCHAR, but + * only handled UCS-2. UTF-16 _is_ UCS-2, except for the characters that + * are 4 bytes, which aren't representable in UCS-2 at all anyhow. If you + * aren't sure, you should be using UTF-16 at this point on Windows. + * + * To ensure that the destination buffer is large enough for the conversion, + * please allocate a buffer that is double the size of the source buffer. + * UTF-8 uses from one to four bytes per character, but UTF-16 always uses + * two to four, so an entirely low-ASCII string will double in size! The + * UTF-16 characters that would take four bytes also take four bytes in UTF-8, + * so you don't need to allocate 4x the space just in case: double will do. + * + * Strings that don't fit in the destination buffer will be truncated, but + * will always be null-terminated and never have an incomplete UTF-16 + * surrogate pair at the end. If the buffer length is 0, this function does + * nothing. + * + * \param src Null-terminated source string in UTF-8 format. + * \param dst Buffer to store converted UTF-16 string. + * \param len Size, in bytes, of destination buffer. + * + * \sa PHYSFS_utf8ToUtf16 + */ +PHYSFS_DECL void PHYSFS_utf8ToUtf16(const char *src, PHYSFS_uint16 *dst, + PHYSFS_uint64 len); + +#endif /* SWIG */ + + +/** + * \fn PHYSFS_sint64 PHYSFS_readBytes(PHYSFS_File *handle, void *buffer, PHYSFS_uint64 len) + * \brief Read bytes from a PhysicsFS filehandle + * + * The file must be opened for reading. + * + * \param handle handle returned from PHYSFS_openRead(). + * \param buffer buffer of at least (len) bytes to store read data into. + * \param len number of bytes being read from (handle). + * \return number of bytes read. This may be less than (len); this does not + * signify an error, necessarily (a short read may mean EOF). + * PHYSFS_getLastError() can shed light on the reason this might + * be < (len), as can PHYSFS_eof(). -1 if complete failure. + * + * \sa PHYSFS_eof + */ +PHYSFS_DECL PHYSFS_sint64 PHYSFS_readBytes(PHYSFS_File *handle, void *buffer, + PHYSFS_uint64 len); + +/** + * \fn PHYSFS_sint64 PHYSFS_writeBytes(PHYSFS_File *handle, const void *buffer, PHYSFS_uint64 len) + * \brief Write data to a PhysicsFS filehandle + * + * The file must be opened for writing. + * + * Please note that while (len) is an unsigned 64-bit integer, you are limited + * to 63 bits (9223372036854775807 bytes), so we can return a negative value + * on error. If length is greater than 0x7FFFFFFFFFFFFFFF, this function will + * immediately fail. For systems without a 64-bit datatype, you are limited + * to 31 bits (0x7FFFFFFF, or 2147483647 bytes). We trust most things won't + * need to do multiple gigabytes of i/o in one call anyhow, but why limit + * things? + * + * \param handle retval from PHYSFS_openWrite() or PHYSFS_openAppend(). + * \param buffer buffer of (len) bytes to write to (handle). + * \param len number of bytes being written to (handle). + * \return number of bytes written. This may be less than (len); in the case + * of an error, the system may try to write as many bytes as possible, + * so an incomplete write might occur. PHYSFS_getLastError() can shed + * light on the reason this might be < (len). -1 if complete failure. + */ +PHYSFS_DECL PHYSFS_sint64 PHYSFS_writeBytes(PHYSFS_File *handle, + const void *buffer, + PHYSFS_uint64 len); + + +#ifndef SWIG /* not available from scripting languages. */ + +/** + * \struct PHYSFS_Io + * \brief An abstract i/o interface. + * + * \warning This is advanced, hardcore stuff. You don't need this unless you + * really know what you're doing. Most apps will not need this. + * + * Historically, PhysicsFS provided access to the physical filesystem and + * archives within that filesystem. However, sometimes you need more power + * than this. Perhaps you need to provide an archive that is entirely + * contained in RAM, or you need to bridge some other file i/o API to + * PhysicsFS, or you need to translate the bits (perhaps you have a + * a standard .zip file that's encrypted, and you need to decrypt on the fly + * for the unsuspecting zip archiver). + * + * A PHYSFS_Io is the interface that Archivers use to get archive data. + * Historically, this has mapped to file i/o to the physical filesystem, but + * as of PhysicsFS 2.1, applications can provide their own i/o implementations + * at runtime. + * + * This interface isn't necessarily a good universal fit for i/o. There are a + * few requirements of note: + * + * - They only do blocking i/o (at least, for now). + * - They need to be able to duplicate. If you have a file handle from + * fopen(), you need to be able to create a unique clone of it (so we + * have two handles to the same file that can both seek/read/etc without + * stepping on each other). + * - They need to know the size of their entire data set. + * - They need to be able to seek and rewind on demand. + * + * ...in short, you're probably not going to write an HTTP implementation. + * + * Thread safety: TO BE DECIDED. !!! FIXME + * + * \sa PHYSFS_mountIo + */ +typedef struct PHYSFS_Io +{ + /** + * \brief Binary compatibility information. + * + * This must be set to zero at this time. Future versions of this + * struct will increment this field, so we know what a given + * implementation supports. We'll presumably keep supporting older + * versions as we offer new features, though. + */ + PHYSFS_uint32 version; + + /** + * \brief Instance data for this struct. + * + * Each instance has a pointer associated with it that can be used to + * store anything it likes. This pointer is per-instance of the stream, + * so presumably it will change when calling duplicate(). This can be + * deallocated during the destroy() method. + */ + void *opaque; + + /** + * \brief Read more data. + * + * Read (len) bytes from the interface, at the current i/o position, and + * store them in (buffer). The current i/o position should move ahead + * by the number of bytes successfully read. + * + * You don't have to implement this; set it to NULL if not implemented. + * This will only be used if the file is opened for reading. If set to + * NULL, a default implementation that immediately reports failure will + * be used. + * + * \param io The i/o instance to read from. + * \param buf The buffer to store data into. It must be at least + * (len) bytes long and can't be NULL. + * \param len The number of bytes to read from the interface. + * \return number of bytes read from file, 0 on EOF, -1 if complete + * failure. + */ + PHYSFS_sint64 (*read)(struct PHYSFS_Io *io, void *buf, PHYSFS_uint64 len); + + /** + * \brief Write more data. + * + * Write (len) bytes from (buffer) to the interface at the current i/o + * position. The current i/o position should move ahead by the number of + * bytes successfully written. + * + * You don't have to implement this; set it to NULL if not implemented. + * This will only be used if the file is opened for writing. If set to + * NULL, a default implementation that immediately reports failure will + * be used. + * + * You are allowed to buffer; a write can succeed here and then later + * fail when flushing. Note that PHYSFS_setBuffer() may be operating a + * level above your i/o, so you should usually not implement your + * own buffering routines. + * + * \param io The i/o instance to write to. + * \param buffer The buffer to read data from. It must be at least + * (len) bytes long and can't be NULL. + * \param len The number of bytes to read from (buffer). + * \return number of bytes written to file, -1 if complete failure. + */ + PHYSFS_sint64 (*write)(struct PHYSFS_Io *io, const void *buffer, + PHYSFS_uint64 len); + + /** + * \brief Move i/o position to a given byte offset from start. + * + * This method moves the i/o position, so the next read/write will + * be of the byte at (offset) offset. Seeks past the end of file should + * be treated as an error condition. + * + * \param io The i/o instance to seek. + * \param offset The new byte offset for the i/o position. + * \return non-zero on success, zero on error. + */ + int (*seek)(struct PHYSFS_Io *io, PHYSFS_uint64 offset); + + /** + * \brief Report current i/o position. + * + * Return bytes offset, or -1 if you aren't able to determine. A failure + * will almost certainly be fatal to further use of this stream, so you + * may not leave this unimplemented. + * + * \param io The i/o instance to query. + * \return The current byte offset for the i/o position, -1 if unknown. + */ + PHYSFS_sint64 (*tell)(struct PHYSFS_Io *io); + + /** + * \brief Determine size of the i/o instance's dataset. + * + * Return number of bytes available in the file, or -1 if you + * aren't able to determine. A failure will almost certainly be fatal + * to further use of this stream, so you may not leave this unimplemented. + * + * \param io The i/o instance to query. + * \return Total size, in bytes, of the dataset. + */ + PHYSFS_sint64 (*length)(struct PHYSFS_Io *io); + + /** + * \brief Duplicate this i/o instance. + * + * // !!! FIXME: write me. + * + * \param io The i/o instance to duplicate. + * \return A new value for a stream's (opaque) field, or NULL on error. + */ + struct PHYSFS_Io *(*duplicate)(struct PHYSFS_Io *io); + + /** + * \brief Flush resources to media, or wherever. + * + * This is the chance to report failure for writes that had claimed + * success earlier, but still had a chance to actually fail. This method + * can be NULL if flushing isn't necessary. + * + * This function may be called before destroy(), as it can report failure + * and destroy() can not. It may be called at other times, too. + * + * \param io The i/o instance to flush. + * \return Zero on error, non-zero on success. + */ + int (*flush)(struct PHYSFS_Io *io); + + /** + * \brief Cleanup and deallocate i/o instance. + * + * Free associated resources, including (opaque) if applicable. + * + * This function must always succeed: as such, it returns void. The + * system may call your flush() method before this. You may report + * failure there if necessary. This method may still be called if + * flush() fails, in which case you'll have to abandon unflushed data + * and other failing conditions and clean up. + * + * Once this method is called for a given instance, the system will assume + * it is unsafe to touch that instance again and will discard any + * references to it. + * + * \param s The i/o instance to destroy. + */ + void (*destroy)(struct PHYSFS_Io *io); +} PHYSFS_Io; + + +/** + * \fn int PHYSFS_mountIo(PHYSFS_Io *io, const char *fname, const char *mountPoint, int appendToPath) + * \brief Add an archive, built on a PHYSFS_Io, to the search path. + * + * \warning Unless you have some special, low-level need, you should be using + * PHYSFS_mount() instead of this. + * + * This function operates just like PHYSFS_mount(), but takes a PHYSFS_Io + * instead of a pathname. Behind the scenes, PHYSFS_mount() calls this + * function with a physical-filesystem-based PHYSFS_Io. + * + * (filename) is only used here to optimize archiver selection (if you name it + * XXXXX.zip, we might try the ZIP archiver first, for example). It doesn't + * need to refer to a real file at all, and can even be NULL. If the filename + * isn't helpful, the system will try every archiver until one works or none + * of them do. + * + * (io) must remain until the archive is unmounted. When the archive is + * unmounted, the system will call (io)->destroy(io), which will give you + * a chance to free your resources. + * + * If this function fails, (io)->destroy(io) is not called. + * + * \param io i/o instance for archive to add to the path. + * \param fname Filename that can represent this stream. Can be NULL. + * \param mountPoint Location in the interpolated tree that this archive + * will be "mounted", in platform-independent notation. + * NULL or "" is equivalent to "/". + * \param appendToPath nonzero to append to search path, zero to prepend. + * \return nonzero if added to path, zero on failure (bogus archive, stream + * i/o issue, etc). Specifics of the error can be + * gleaned from PHYSFS_getLastError(). + * + * \sa PHYSFS_unmount + * \sa PHYSFS_getSearchPath + * \sa PHYSFS_getMountPoint + */ +PHYSFS_DECL int PHYSFS_mountIo(PHYSFS_Io *io, const char *fname, + const char *mountPoint, int appendToPath); + +#endif /* SWIG */ + +/** + * \fn int PHYSFS_mountMemory(const void *ptr, PHYSFS_uint64 len, void (*del)(void *), const char *fname, const char *mountPoint, int appendToPath) + * \brief Add an archive, contained in a memory buffer, to the search path. + * + * \warning Unless you have some special, low-level need, you should be using + * PHYSFS_mount() instead of this. + * + * This function operates just like PHYSFS_mount(), but takes a memory buffer + * instead of a pathname. This buffer contains all the data of the archive, + * and is used instead of a real file in the physical filesystem. + * + * (filename) is only used here to optimize archiver selection (if you name it + * XXXXX.zip, we might try the ZIP archiver first, for example). It doesn't + * need to refer to a real file at all, and can even be NULL. If the filename + * isn't helpful, the system will try every archiver until one works or none + * of them do. + * + * (ptr) must remain until the archive is unmounted. When the archive is + * unmounted, the system will call (del)(ptr), which will notify you that + * the system is done with the buffer, and give you a chance to free your + * resources. (del) can be NULL, in which case the system will make no + * attempt to free the buffer. + * + * If this function fails, (del) is not called. + * + * \param ptr Address of the memory buffer containing the archive data. + * \param len Size of memory buffer, in bytes. + * \param del A callback that triggers upon unmount. Can be NULL. + * \param fname Filename that can represent this stream. Can be NULL. + * \param mountPoint Location in the interpolated tree that this archive + * will be "mounted", in platform-independent notation. + * NULL or "" is equivalent to "/". + * \param appendToPath nonzero to append to search path, zero to prepend. + * \return nonzero if added to path, zero on failure (bogus archive, etc). + * Specifics of the error can be gleaned from + * PHYSFS_getLastError(). + * + * \sa PHYSFS_unmount + * \sa PHYSFS_getSearchPath + * \sa PHYSFS_getMountPoint + */ +PHYSFS_DECL int PHYSFS_mountMemory(const void *buf, PHYSFS_uint64 len, + void (*del)(void *), const char *fname, + const char *mountPoint, int appendToPath); + + +/** + * \fn int PHYSFS_mountHandle(PHYSFS_File *file, const char *fname, const char *mountPoint, int appendToPath) + * \brief Add an archive, contained in a PHYSFS_File handle, to the search path. + * + * \warning Unless you have some special, low-level need, you should be using + * PHYSFS_mount() instead of this. + * + * \warning Archives-in-archives may be very slow! While a PHYSFS_File can + * seek even when the data is compressed, it may do so by rewinding + * to the start and decompressing everything before the seek point. + * Normal archive usage may do a lot of seeking behind the scenes. + * As such, you might find normal archive usage extremely painful + * if mounted this way. Plan accordingly: if you, say, have a + * self-extracting .zip file, and want to mount something in it, + * compress the contents of the inner archive and make sure the outer + * .zip file doesn't compress the inner archive too. + * + * This function operates just like PHYSFS_mount(), but takes a PHYSFS_File + * handle instead of a pathname. This handle contains all the data of the + * archive, and is used instead of a real file in the physical filesystem. + * The PHYSFS_File may be backed by a real file in the physical filesystem, + * but isn't necessarily. The most popular use for this is likely to mount + * archives stored inside other archives. + * + * (filename) is only used here to optimize archiver selection (if you name it + * XXXXX.zip, we might try the ZIP archiver first, for example). It doesn't + * need to refer to a real file at all, and can even be NULL. If the filename + * isn't helpful, the system will try every archiver until one works or none + * of them do. + * + * (file) must remain until the archive is unmounted. When the archive is + * unmounted, the system will call PHYSFS_close(file). If you need this + * handle to survive, you will have to wrap this in a PHYSFS_Io and use + * PHYSFS_mountIo() instead. + * + * If this function fails, PHYSFS_close(file) is not called. + * + * \param file The PHYSFS_File handle containing archive data. + * \param fname Filename that can represent this stream. Can be NULL. + * \param mountPoint Location in the interpolated tree that this archive + * will be "mounted", in platform-independent notation. + * NULL or "" is equivalent to "/". + * \param appendToPath nonzero to append to search path, zero to prepend. + * \return nonzero if added to path, zero on failure (bogus archive, etc). + * Specifics of the error can be gleaned from + * PHYSFS_getLastError(). + * + * \sa PHYSFS_unmount + * \sa PHYSFS_getSearchPath + * \sa PHYSFS_getMountPoint + */ +PHYSFS_DECL int PHYSFS_mountHandle(PHYSFS_File *file, const char *fname, + const char *mountPoint, int appendToPath); + + +/** + * \enum PHYSFS_ErrorCode + * \brief Values that represent specific causes of failure. + * + * Most of the time, you should only concern yourself with whether a given + * operation failed or not, but there may be occasions where you plan to + * handle a specific failure case gracefully, so we provide specific error + * codes. + * + * Most of these errors are a little vague, and most aren't things you can + * fix...if there's a permission error, for example, all you can really do + * is pass that information on to the user and let them figure out how to + * handle it. In most these cases, your program should only care that it + * failed to accomplish its goals, and not care specifically why. + * + * \sa PHYSFS_getLastErrorCode + * \sa PHYSFS_getErrorByCode + */ +typedef enum PHYSFS_ErrorCode +{ + PHYSFS_ERR_OK, /**< Success; no error. */ + PHYSFS_ERR_OTHER_ERROR, /**< Error not otherwise covered here. */ + PHYSFS_ERR_OUT_OF_MEMORY, /**< Memory allocation failed. */ + PHYSFS_ERR_NOT_INITIALIZED, /**< PhysicsFS is not initialized. */ + PHYSFS_ERR_IS_INITIALIZED, /**< PhysicsFS is already initialized. */ + PHYSFS_ERR_ARGV0_IS_NULL, /**< Needed argv[0], but it is NULL. */ + PHYSFS_ERR_UNSUPPORTED, /**< Operation or feature unsupported. */ + PHYSFS_ERR_PAST_EOF, /**< Attempted to access past end of file. */ + PHYSFS_ERR_FILES_STILL_OPEN, /**< Files still open. */ + PHYSFS_ERR_INVALID_ARGUMENT, /**< Bad parameter passed to an function. */ + PHYSFS_ERR_NOT_MOUNTED, /**< Requested archive/dir not mounted. */ + PHYSFS_ERR_NO_SUCH_PATH, /**< No such file, directory, or parent. */ + PHYSFS_ERR_SYMLINK_FORBIDDEN,/**< Symlink seen when not permitted. */ + PHYSFS_ERR_NO_WRITE_DIR, /**< No write dir has been specified. */ + PHYSFS_ERR_OPEN_FOR_READING, /**< Wrote to a file opened for reading. */ + PHYSFS_ERR_OPEN_FOR_WRITING, /**< Read from a file opened for writing. */ + PHYSFS_ERR_NOT_A_FILE, /**< Needed a file, got a directory (etc). */ + PHYSFS_ERR_READ_ONLY, /**< Wrote to a read-only filesystem. */ + PHYSFS_ERR_CORRUPT, /**< Corrupted data encountered. */ + PHYSFS_ERR_SYMLINK_LOOP, /**< Infinite symbolic link loop. */ + PHYSFS_ERR_IO, /**< i/o error (hardware failure, etc). */ + PHYSFS_ERR_PERMISSION, /**< Permission denied. */ + PHYSFS_ERR_NO_SPACE, /**< No space (disk full, over quota, etc) */ + PHYSFS_ERR_BAD_FILENAME, /**< Filename is bogus/insecure. */ + PHYSFS_ERR_BUSY, /**< Tried to modify a file the OS needs. */ + PHYSFS_ERR_DIR_NOT_EMPTY, /**< Tried to delete dir with files in it. */ + PHYSFS_ERR_OS_ERROR /**< Unspecified OS-level error. */ +} PHYSFS_ErrorCode; + + +/** + * \fn PHYSFS_ErrorCode PHYSFS_getLastErrorCode(void) + * \brief Get machine-readable error information. + * + * Get the last PhysicsFS error message as an integer value. This will return + * PHYSFS_ERR_OK if there's been no error since the last call to this + * function. Each thread has a unique error state associated with it, but + * each time a new error message is set, it will overwrite the previous one + * associated with that thread. It is safe to call this function at anytime, + * even before PHYSFS_init(). + * + * PHYSFS_getLastError() and PHYSFS_getLastErrorCode() both reset the same + * thread-specific error state. Calling one will wipe out the other's + * data. If you need both, call PHYSFS_getLastErrorCode(), then pass that + * value to PHYSFS_getErrorByCode(). + * + * Generally, applications should only concern themselves with whether a + * given function failed; however, if you require more specifics, you can + * try this function to glean information, if there's some specific problem + * you're expecting and plan to handle. But with most things that involve + * file systems, the best course of action is usually to give up, report the + * problem to the user, and let them figure out what should be done about it. + * For that, you might prefer PHYSFS_getLastError() instead. + * + * \return Enumeration value that represents last reported error. + * + * \sa PHYSFS_getErrorByCode + */ +PHYSFS_DECL PHYSFS_ErrorCode PHYSFS_getLastErrorCode(void); + + +/** + * \fn const char *PHYSFS_getErrorByCode(PHYSFS_ErrorCode code) + * \brief Get human-readable description string for a given error code. + * + * Get a static string, in UTF-8 format, that represents an English + * description of a given error code. + * + * This string is guaranteed to never change (although we may add new strings + * for new error codes in later versions of PhysicsFS), so you can use it + * for keying a localization dictionary. + * + * It is safe to call this function at anytime, even before PHYSFS_init(). + * + * These strings are meant to be passed on directly to the user. + * Generally, applications should only concern themselves with whether a + * given function failed, but not care about the specifics much. + * + * Do not attempt to free the returned strings; they are read-only and you + * don't own their memory pages. + * + * \param code Error code to convert to a string. + * \return READ ONLY string of requested error message, NULL if this + * is not a valid PhysicsFS error code. Always check for NULL if + * you might be looking up an error code that didn't exist in an + * earlier version of PhysicsFS. + * + * \sa PHYSFS_getLastErrorCode + */ +PHYSFS_DECL const char *PHYSFS_getErrorByCode(PHYSFS_ErrorCode code); + +/** + * \fn void PHYSFS_setErrorCode(PHYSFS_ErrorCode code) + * \brief Set the current thread's error code. + * + * This lets you set the value that will be returned by the next call to + * PHYSFS_getLastErrorCode(). This will replace any existing error code, + * whether set by your application or internally by PhysicsFS. + * + * Error codes are stored per-thread; what you set here will not be + * accessible to another thread. + * + * Any call into PhysicsFS may change the current error code, so any code you + * set here is somewhat fragile, and thus you shouldn't build any serious + * error reporting framework on this function. The primary goal of this + * function is to allow PHYSFS_Io implementations to set the error state, + * which generally will be passed back to your application when PhysicsFS + * makes a PHYSFS_Io call that fails internally. + * + * This function doesn't care if the error code is a value known to PhysicsFS + * or not (but PHYSFS_getErrorByCode() will return NULL for unknown values). + * The value will be reported unmolested by PHYSFS_getLastErrorCode(). + * + * \param code Error code to become the current thread's new error state. + * + * \sa PHYSFS_getLastErrorCode + * \sa PHYSFS_getErrorByCode + */ +PHYSFS_DECL void PHYSFS_setErrorCode(PHYSFS_ErrorCode code); + + +/** + * \fn const char *PHYSFS_getPrefDir(const char *org, const char *app) + * \brief Get the user-and-app-specific path where files can be written. + * + * Helper function. + * + * Get the "pref dir". This is meant to be where users can write personal + * files (preferences and save games, etc) that are specific to your + * application. This directory is unique per user, per application. + * + * This function will decide the appropriate location in the native filesystem, + * create the directory if necessary, and return a string in + * platform-dependent notation, suitable for passing to PHYSFS_setWriteDir(). + * + * On Windows, this might look like: + * "C:\\Users\\bob\\AppData\\Roaming\\My Company\\My Program Name" + * + * On Linux, this might look like: + * "/home/bob/.local/share/My Program Name" + * + * On Mac OS X, this might look like: + * "/Users/bob/Library/Application Support/My Program Name" + * + * (etc.) + * + * You should probably use the pref dir for your write dir, and also put it + * near the beginning of your search path. Older versions of PhysicsFS + * offered only PHYSFS_getUserDir() and left you to figure out where the + * files should go under that tree. This finds the correct location + * for whatever platform, which not only changes between operating systems, + * but also versions of the same operating system. + * + * You specify the name of your organization (if it's not a real organization, + * your name or an Internet domain you own might do) and the name of your + * application. These should be proper names. + * + * Both the (org) and (app) strings may become part of a directory name, so + * please follow these rules: + * + * - Try to use the same org string (including case-sensitivity) for + * all your applications that use this function. + * - Always use a unique app string for each one, and make sure it never + * changes for an app once you've decided on it. + * - Unicode characters are legal, as long as it's UTF-8 encoded, but... + * - ...only use letters, numbers, and spaces. Avoid punctuation like + * "Game Name 2: Bad Guy's Revenge!" ... "Game Name 2" is sufficient. + * + * The pointer returned by this function remains valid until you call this + * function again, or call PHYSFS_deinit(). This is not necessarily a fast + * call, though, so you should call this once at startup and copy the string + * if you need it. + * + * You should assume the path returned by this function is the only safe + * place to write files (and that PHYSFS_getUserDir() and PHYSFS_getBaseDir(), + * while they might be writable, or even parents of the returned path, aren't + * where you should be writing things). + * + * \param org The name of your organization. + * \param app The name of your application. + * \return READ ONLY string of user dir in platform-dependent notation. NULL + * if there's a problem (creating directory failed, etc). + * + * \sa PHYSFS_getBaseDir + * \sa PHYSFS_getUserDir + */ +PHYSFS_DECL const char *PHYSFS_getPrefDir(const char *org, const char *app); + + +/* Everything above this line is part of the PhysicsFS 2.1 API. */ + + +#ifdef __cplusplus +} +#endif + +#endif /* !defined _INCLUDE_PHYSFS_H_ */ + +/* end of physfs.h ... */ +