Engine/Frontend:
* Added prg's inverted mazes
* Updated ts files and German translation
/*** $Id: lopcodes.h,v 1.125.1.1 2007/12/27 13:02:25 roberto Exp $** Opcodes for Lua virtual machine** See Copyright Notice in lua.h*/#ifndef lopcodes_h#define lopcodes_h#include "llimits.h"/*=========================================================================== We assume that instructions are unsigned numbers. All instructions have an opcode in the first 6 bits. Instructions can have the following fields: `A' : 8 bits `B' : 9 bits `C' : 9 bits `Bx' : 18 bits (`B' and `C' together) `sBx' : signed Bx A signed argument is represented in excess K; that is, the number value is the unsigned value minus K. K is exactly the maximum value for that argument (so that -max is represented by 0, and +max is represented by 2*max), which is half the maximum for the corresponding unsigned argument.===========================================================================*/enum OpMode {iABC, iABx, iAsBx}; /* basic instruction format *//*** size and position of opcode arguments.*/#define SIZE_C 9#define SIZE_B 9#define SIZE_Bx (SIZE_C + SIZE_B)#define SIZE_A 8#define SIZE_OP 6#define POS_OP 0#define POS_A (POS_OP + SIZE_OP)#define POS_C (POS_A + SIZE_A)#define POS_B (POS_C + SIZE_C)#define POS_Bx POS_C/*** limits for opcode arguments.** we use (signed) int to manipulate most arguments,** so they must fit in LUAI_BITSINT-1 bits (-1 for sign)*/#if SIZE_Bx < LUAI_BITSINT-1#define MAXARG_Bx ((1<<SIZE_Bx)-1)#define MAXARG_sBx (MAXARG_Bx>>1) /* `sBx' is signed */#else#define MAXARG_Bx MAX_INT#define MAXARG_sBx MAX_INT#endif#define MAXARG_A ((1<<SIZE_A)-1)#define MAXARG_B ((1<<SIZE_B)-1)#define MAXARG_C ((1<<SIZE_C)-1)/* creates a mask with `n' 1 bits at position `p' */#define MASK1(n,p) ((~((~(Instruction)0)<<n))<<p)/* creates a mask with `n' 0 bits at position `p' */#define MASK0(n,p) (~MASK1(n,p))/*** the following macros help to manipulate instructions*/#define GET_OPCODE(i) (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0)))#define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \ ((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP))))#define GETARG_A(i) (cast(int, ((i)>>POS_A) & MASK1(SIZE_A,0)))#define SETARG_A(i,u) ((i) = (((i)&MASK0(SIZE_A,POS_A)) | \ ((cast(Instruction, u)<<POS_A)&MASK1(SIZE_A,POS_A))))#define GETARG_B(i) (cast(int, ((i)>>POS_B) & MASK1(SIZE_B,0)))#define SETARG_B(i,b) ((i) = (((i)&MASK0(SIZE_B,POS_B)) | \ ((cast(Instruction, b)<<POS_B)&MASK1(SIZE_B,POS_B))))#define GETARG_C(i) (cast(int, ((i)>>POS_C) & MASK1(SIZE_C,0)))#define SETARG_C(i,b) ((i) = (((i)&MASK0(SIZE_C,POS_C)) | \ ((cast(Instruction, b)<<POS_C)&MASK1(SIZE_C,POS_C))))#define GETARG_Bx(i) (cast(int, ((i)>>POS_Bx) & MASK1(SIZE_Bx,0)))#define SETARG_Bx(i,b) ((i) = (((i)&MASK0(SIZE_Bx,POS_Bx)) | \ ((cast(Instruction, b)<<POS_Bx)&MASK1(SIZE_Bx,POS_Bx))))#define GETARG_sBx(i) (GETARG_Bx(i)-MAXARG_sBx)#define SETARG_sBx(i,b) SETARG_Bx((i),cast(unsigned int, (b)+MAXARG_sBx))#define CREATE_ABC(o,a,b,c) ((cast(Instruction, o)<<POS_OP) \ | (cast(Instruction, a)<<POS_A) \ | (cast(Instruction, b)<<POS_B) \ | (cast(Instruction, c)<<POS_C))#define CREATE_ABx(o,a,bc) ((cast(Instruction, o)<<POS_OP) \ | (cast(Instruction, a)<<POS_A) \ | (cast(Instruction, bc)<<POS_Bx))/*** Macros to operate RK indices*//* this bit 1 means constant (0 means register) */#define BITRK (1 << (SIZE_B - 1))/* test whether value is a constant */#define ISK(x) ((x) & BITRK)/* gets the index of the constant */#define INDEXK(r) ((int)(r) & ~BITRK)#define MAXINDEXRK (BITRK - 1)/* code a constant index as a RK value */#define RKASK(x) ((x) | BITRK)/*** invalid register that fits in 8 bits*/#define NO_REG MAXARG_A/*** R(x) - register** Kst(x) - constant (in constant table)** RK(x) == if ISK(x) then Kst(INDEXK(x)) else R(x)*//*** grep "ORDER OP" if you change these enums*/typedef enum {/*----------------------------------------------------------------------name args description------------------------------------------------------------------------*/OP_MOVE,/* A B R(A) := R(B) */OP_LOADK,/* A Bx R(A) := Kst(Bx) */OP_LOADBOOL,/* A B C R(A) := (Bool)B; if (C) pc++ */OP_LOADNIL,/* A B R(A) := ... := R(B) := nil */OP_GETUPVAL,/* A B R(A) := UpValue[B] */OP_GETGLOBAL,/* A Bx R(A) := Gbl[Kst(Bx)] */OP_GETTABLE,/* A B C R(A) := R(B)[RK(C)] */OP_SETGLOBAL,/* A Bx Gbl[Kst(Bx)] := R(A) */OP_SETUPVAL,/* A B UpValue[B] := R(A) */OP_SETTABLE,/* A B C R(A)[RK(B)] := RK(C) */OP_NEWTABLE,/* A B C R(A) := {} (size = B,C) */OP_SELF,/* A B C R(A+1) := R(B); R(A) := R(B)[RK(C)] */OP_ADD,/* A B C R(A) := RK(B) + RK(C) */OP_SUB,/* A B C R(A) := RK(B) - RK(C) */OP_MUL,/* A B C R(A) := RK(B) * RK(C) */OP_DIV,/* A B C R(A) := RK(B) / RK(C) */OP_MOD,/* A B C R(A) := RK(B) % RK(C) */OP_POW,/* A B C R(A) := RK(B) ^ RK(C) */OP_UNM,/* A B R(A) := -R(B) */OP_NOT,/* A B R(A) := not R(B) */OP_LEN,/* A B R(A) := length of R(B) */OP_CONCAT,/* A B C R(A) := R(B).. ... ..R(C) */OP_JMP,/* sBx pc+=sBx */OP_EQ,/* A B C if ((RK(B) == RK(C)) ~= A) then pc++ */OP_LT,/* A B C if ((RK(B) < RK(C)) ~= A) then pc++ */OP_LE,/* A B C if ((RK(B) <= RK(C)) ~= A) then pc++ */OP_TEST,/* A C if not (R(A) <=> C) then pc++ */ OP_TESTSET,/* A B C if (R(B) <=> C) then R(A) := R(B) else pc++ */ OP_CALL,/* A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */OP_TAILCALL,/* A B C return R(A)(R(A+1), ... ,R(A+B-1)) */OP_RETURN,/* A B return R(A), ... ,R(A+B-2) (see note) */OP_FORLOOP,/* A sBx R(A)+=R(A+2); if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/OP_FORPREP,/* A sBx R(A)-=R(A+2); pc+=sBx */OP_TFORLOOP,/* A C R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2)); if R(A+3) ~= nil then R(A+2)=R(A+3) else pc++ */ OP_SETLIST,/* A B C R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B */OP_CLOSE,/* A close all variables in the stack up to (>=) R(A)*/OP_CLOSURE,/* A Bx R(A) := closure(KPROTO[Bx], R(A), ... ,R(A+n)) */OP_VARARG/* A B R(A), R(A+1), ..., R(A+B-1) = vararg */} OpCode;#define NUM_OPCODES (cast(int, OP_VARARG) + 1)/*=========================================================================== Notes: (*) In OP_CALL, if (B == 0) then B = top. C is the number of returns - 1, and can be 0: OP_CALL then sets `top' to last_result+1, so next open instruction (OP_CALL, OP_RETURN, OP_SETLIST) may use `top'. (*) In OP_VARARG, if (B == 0) then use actual number of varargs and set top (like in OP_CALL with C == 0). (*) In OP_RETURN, if (B == 0) then return up to `top' (*) In OP_SETLIST, if (B == 0) then B = `top'; if (C == 0) then next `instruction' is real C (*) For comparisons, A specifies what condition the test should accept (true or false). (*) All `skips' (pc++) assume that next instruction is a jump===========================================================================*//*** masks for instruction properties. The format is:** bits 0-1: op mode** bits 2-3: C arg mode** bits 4-5: B arg mode** bit 6: instruction set register A** bit 7: operator is a test*/ enum OpArgMask { OpArgN, /* argument is not used */ OpArgU, /* argument is used */ OpArgR, /* argument is a register or a jump offset */ OpArgK /* argument is a constant or register/constant */};LUAI_DATA const lu_byte luaP_opmodes[NUM_OPCODES];#define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 3))#define getBMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 4) & 3))#define getCMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 2) & 3))#define testAMode(m) (luaP_opmodes[m] & (1 << 6))#define testTMode(m) (luaP_opmodes[m] & (1 << 7))LUAI_DATA const char *const luaP_opnames[NUM_OPCODES+1]; /* opcode names *//* number of list items to accumulate before a SETLIST instruction */#define LFIELDS_PER_FLUSH 50#endif