use fpnum::{fp, integral_sqrt, FPNum, FPPoint};
use std::{
cmp::{max, min},
ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, RangeInclusive, Sub, SubAssign},
};
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
pub struct Point {
pub x: i32,
pub y: i32,
}
impl Point {
pub const ZERO: Self = Self::new(0, 0);
#[inline]
pub const fn new(x: i32, y: i32) -> Self {
Self { x, y }
}
#[inline]
pub const fn diag(v: i32) -> Self {
Self::new(v, v)
}
#[inline]
pub fn signum(self) -> Self {
Self::new(self.x.signum(), self.y.signum())
}
#[inline]
pub fn abs(self) -> Self {
Self::new(self.x.abs(), self.y.abs())
}
#[inline]
pub const fn dot(self, other: Point) -> i32 {
self.x * other.x + self.y * other.y
}
#[inline]
pub fn max_norm(self) -> i32 {
std::cmp::max(self.x.abs(), self.y.abs())
}
#[inline]
pub fn integral_norm(self) -> u32 {
let sqr = (self.x as u64).pow(2) + (self.y as u64).pow(2);
integral_sqrt(sqr) as u32
}
#[inline]
pub const fn transform(self, matrix: &[i32; 4]) -> Self {
Point::new(
matrix[0] * self.x + matrix[1] * self.y,
matrix[2] * self.x + matrix[3] * self.y,
)
}
#[inline]
pub const fn rotate90(self) -> Self {
Point::new(self.y, -self.x)
}
#[inline]
pub const fn cross(self, other: Point) -> i32 {
self.dot(other.rotate90())
}
#[inline]
pub fn clamp(self, rect: &Rect) -> Point {
Point::new(rect.x_range().clamp(self.x), rect.y_range().clamp(self.y))
}
#[inline]
pub const fn line_to(self, end: Point) -> Line {
Line::new(self, end)
}
#[inline]
pub const fn ray_with_dir(self, direction: Point) -> Ray {
Ray::new(self, direction)
}
#[inline]
pub const fn tangent_mul(self, x: i32) -> i32 {
x * self.y / self.x
}
#[inline]
pub const fn cotangent_mul(self, y: i32) -> i32 {
y * self.x / self.y
}
#[inline]
pub fn to_fppoint(self) -> FPPoint {
FPPoint::new(self.x.into(), self.y.into())
}
#[inline]
pub fn from_fppoint(p: &FPPoint) -> Self {
Self::new(p.x().round(), p.y().round())
}
}
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
pub struct Size {
pub width: usize,
pub height: usize,
}
impl Size {
pub const EMPTY: Self = Self::square(0);
#[inline]
pub const fn new(width: usize, height: usize) -> Self {
Self { width, height }
}
#[inline]
pub const fn square(size: usize) -> Self {
Self {
width: size,
height: size,
}
}
#[inline]
pub const fn area(&self) -> usize {
self.width * self.height
}
#[inline]
pub const fn linear_index(&self, x: usize, y: usize) -> usize {
y * self.width + x
}
#[inline]
pub fn is_power_of_two(&self) -> bool {
self.width.is_power_of_two() && self.height.is_power_of_two()
}
#[inline]
pub fn next_power_of_two(&self) -> Self {
Self {
width: self.width.next_power_of_two(),
height: self.height.next_power_of_two(),
}
}
#[inline]
pub const fn transpose(&self) -> Self {
Self::new(self.height, self.width)
}
#[inline]
pub fn to_mask(&self) -> SizeMask {
SizeMask::new(*self)
}
#[inline]
pub fn to_square(&self) -> Self {
Self::square(max(self.width, self.height))
}
pub fn to_grid_index(&self) -> GridIndex {
GridIndex::new(*self)
}
#[inline]
pub fn contains(&self, other: Self) -> bool {
self.width >= other.width && self.height >= other.height
}
}
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
pub struct SizeMask {
size: Size,
}
impl SizeMask {
#[inline]
pub fn new(size: Size) -> Self {
debug_assert!(size.is_power_of_two());
let size = Size {
width: !(size.width - 1),
height: !(size.height - 1),
};
Self { size }
}
#[inline]
pub fn contains_x<T: Into<usize>>(&self, x: T) -> bool {
(self.size.width & x.into()) == 0
}
#[inline]
pub fn contains_y<T: Into<usize>>(&self, y: T) -> bool {
(self.size.height & y.into()) == 0
}
#[inline]
pub fn contains(&self, point: Point) -> bool {
self.contains_x(point.x as usize) && self.contains_y(point.y as usize)
}
}
pub struct GridIndex {
shift: Point,
}
impl GridIndex {
pub fn new(size: Size) -> Self {
assert!(size.is_power_of_two());
let shift = Point::new(
size.width.trailing_zeros() as i32,
size.height.trailing_zeros() as i32,
);
Self { shift }
}
pub fn map(&self, position: Point) -> Point {
Point::new(position.x >> self.shift.x, position.y >> self.shift.y)
}
}
macro_rules! bin_op_impl {
($op: ty, $name: tt) => {
impl $op for Point {
type Output = Self;
#[inline]
fn $name(self, rhs: Self) -> Self::Output {
Self::new(self.x.$name(rhs.x), self.y.$name(rhs.y))
}
}
};
}
macro_rules! scalar_bin_op_impl {
($($op: tt)::+, $name: tt) => {
impl $($op)::+<i32> for Point {
type Output = Self;
#[inline]
fn $name(self, rhs: i32) -> Self::Output {
Self::new(self.x.$name(rhs), self.y.$name(rhs))
}
}
};
}
macro_rules! bin_assign_op_impl {
($op: ty, $name: tt) => {
impl $op for Point {
#[inline]
fn $name(&mut self, rhs: Self) {
self.x.$name(rhs.x);
self.y.$name(rhs.y);
}
}
};
}
macro_rules! fp_scalar_bin_op_impl {
($($op: tt)::+, $name: tt) => {
impl $($op)::+<FPNum> for Point {
type Output = FPPoint;
#[inline]
fn $name(self, rhs: FPNum) -> Self::Output {
FPPoint::new(rhs.$name(self.x), rhs.$name(self.y))
}
}
};
}
macro_rules! left_fp_scalar_bin_op_impl {
($($op: tt)::+, $name: tt) => {
impl $($op)::+<Point> for FPNum {
type Output = FPPoint;
#[inline]
fn $name(self, rhs: Point) -> Self::Output {
FPPoint::new(self.$name(rhs.x), self.$name(rhs.y))
}
}
};
}
bin_op_impl!(Add, add);
bin_op_impl!(Sub, sub);
bin_op_impl!(Mul, mul);
bin_op_impl!(Div, div);
scalar_bin_op_impl!(Mul, mul);
scalar_bin_op_impl!(Div, div);
fp_scalar_bin_op_impl!(Mul, mul);
fp_scalar_bin_op_impl!(Div, div);
left_fp_scalar_bin_op_impl!(Mul, mul);
left_fp_scalar_bin_op_impl!(Div, div);
bin_assign_op_impl!(AddAssign, add_assign);
bin_assign_op_impl!(SubAssign, sub_assign);
bin_assign_op_impl!(MulAssign, mul_assign);
bin_assign_op_impl!(DivAssign, div_assign);
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
pub struct Rect {
top_left: Point,
bottom_right: Point,
}
impl Rect {
pub const EMPTY: Self = Self {
top_left: Point::ZERO,
bottom_right: Point::diag(-1),
};
#[inline]
pub fn new(top_left: Point, bottom_right: Point) -> Self {
debug_assert!(top_left.x <= bottom_right.x + 1);
debug_assert!(top_left.y <= bottom_right.y + 1);
Self {
top_left,
bottom_right,
}
}
pub fn from_box(left: i32, right: i32, top: i32, bottom: i32) -> Self {
Self::new(Point::new(left, top), Point::new(right, bottom))
}
pub fn from_size(top_left: Point, size: Size) -> Self {
Self::new(
top_left,
top_left + Point::new(size.width as i32 - 1, size.height as i32 - 1),
)
}
pub fn from_size_coords(x: i32, y: i32, width: usize, height: usize) -> Self {
Self::from_size(Point::new(x, y), Size::new(width, height))
}
pub fn at_origin(size: Size) -> Self {
Self::from_size(Point::ZERO, size)
}
#[inline]
pub const fn width(&self) -> usize {
(self.right() - self.left() + 1) as usize
}
#[inline]
pub const fn height(&self) -> usize {
(self.bottom() - self.top() + 1) as usize
}
#[inline]
pub const fn size(&self) -> Size {
Size::new(self.width(), self.height())
}
#[inline]
pub const fn area(&self) -> usize {
self.size().area()
}
#[inline]
pub const fn left(&self) -> i32 {
self.top_left().x
}
#[inline]
pub const fn top(&self) -> i32 {
self.top_left().y
}
#[inline]
pub const fn right(&self) -> i32 {
self.bottom_right().x
}
#[inline]
pub const fn bottom(&self) -> i32 {
self.bottom_right().y
}
#[inline]
pub const fn top_left(&self) -> Point {
self.top_left
}
#[inline]
pub const fn bottom_right(&self) -> Point {
self.bottom_right
}
#[inline]
pub fn center(&self) -> Point {
(self.top_left() + self.bottom_right()) / 2
}
#[inline]
pub fn with_margin(&self, margin: i32) -> Self {
let offset = Point::diag(margin);
Self::new(self.top_left() + offset, self.bottom_right() - offset)
}
#[inline]
pub fn x_range(&self) -> RangeInclusive<i32> {
self.left()..=self.right()
}
#[inline]
pub fn y_range(&self) -> RangeInclusive<i32> {
self.top()..=self.bottom()
}
#[inline]
pub fn contains(&self, point: Point) -> bool {
self.x_range().contains(&point.x) && self.y_range().contains(&point.y)
}
#[inline]
pub fn contains_inside(&self, point: Point) -> bool {
point.x > self.left()
&& point.x < self.right()
&& point.y > self.top()
&& point.y < self.bottom()
}
#[inline]
pub fn contains_rect(&self, other: &Self) -> bool {
self.contains(other.top_left()) && self.contains(other.bottom_right())
}
#[inline]
pub fn intersects(&self, other: &Rect) -> bool {
self.left() <= other.right()
&& self.right() >= other.left()
&& self.top() <= other.bottom()
&& self.bottom() >= other.top()
}
#[inline]
pub fn split_at(&self, point: Point) -> [Rect; 4] {
assert!(self.contains_inside(point));
[
Self::from_box(self.left(), point.x, self.top(), point.y),
Self::from_box(point.x, self.right(), self.top(), point.y),
Self::from_box(point.x, self.right(), point.y, self.bottom()),
Self::from_box(self.left(), point.x, point.y, self.bottom()),
]
}
#[inline]
pub fn with_margins(&self, left: i32, right: i32, top: i32, bottom: i32) -> Self {
Self::from_box(
self.left() - left,
self.right() + right,
self.top() - top,
self.bottom() + bottom,
)
}
#[inline]
pub fn quotient(self, x: usize, y: usize) -> Point {
self.top_left() + Point::new((x % self.width()) as i32, (y % self.height()) as i32)
}
}
trait RangeClamp<T> {
fn clamp(&self, value: T) -> T;
}
impl<T: Ord + Copy> RangeClamp<T> for RangeInclusive<T> {
fn clamp(&self, value: T) -> T {
if value < *self.start() {
*self.start()
} else if value > *self.end() {
*self.end()
} else {
value
}
}
}
pub struct Polygon {
vertices: Vec<Point>,
}
impl Polygon {
pub fn new(vertices: &[Point]) -> Self {
let mut v = Vec::with_capacity(vertices.len() + 1);
v.extend_from_slice(vertices);
if !v.is_empty() {
let start = v[0];
v.push(start);
}
Self { vertices: v }
}
pub fn edges_count(&self) -> usize {
self.vertices.len() - 1
}
pub fn get_edge(&self, index: usize) -> Line {
Line::new(self.vertices[index], self.vertices[index + 1])
}
pub fn split_edge(&mut self, edge_index: usize, vertex: Point) {
self.vertices.insert(edge_index + 1, vertex);
}
pub fn iter<'a>(&'a self) -> impl Iterator<Item = &Point> + 'a {
(&self.vertices[..self.edges_count()]).iter()
}
pub fn iter_mut<'a>(&'a mut self) -> impl Iterator<Item = &mut Point> + 'a {
let edges_count = self.edges_count();
let start = self.vertices.as_mut_ptr();
let end = unsafe { start.add(edges_count) };
PolygonPointsIteratorMut {
source: self,
start,
end,
}
}
fn force_close(&mut self) {
if !self.vertices.is_empty() {
let edges_count = self.edges_count();
self.vertices[edges_count] = self.vertices[0];
}
}
pub fn iter_edges<'a>(&'a self) -> impl Iterator<Item = Line> + 'a {
(&self.vertices[0..self.edges_count()])
.iter()
.zip(&self.vertices[1..])
.map(|(s, e)| Line::new(*s, *e))
}
pub fn bezierize(&mut self, segments_number: u32) {
fn calc_point(p1: Point, p2: Point, p3: Point) -> FPPoint {
let diff13 = (p1 - p3).to_fppoint();
let diff13_norm = diff13.distance();
if diff13_norm.is_zero() {
diff13
} else {
let diff12_norm = (p1 - p2).to_fppoint().distance();
let diff23_norm = (p2 - p3).to_fppoint().distance();
let min_distance = min(diff13_norm, min(diff12_norm, diff23_norm));
diff13 * min_distance / diff13_norm / 3
}
}
if self.vertices.len() < 4 {
return;
}
let delta = fp!(1 / segments_number);
let mut bezierized_vertices = Vec::new();
let mut pi = 0;
let mut i = 1;
let mut ni = 2;
let mut right_point = calc_point(self.vertices[pi], self.vertices[i], self.vertices[ni]);
let mut left_point;
pi += 1;
while pi != 0 {
pi = i;
i = ni;
ni += 1;
if ni >= self.vertices.len() {
ni = 0;
}
left_point = right_point;
right_point = calc_point(self.vertices[pi], self.vertices[i], self.vertices[ni]);
bezierized_vertices.extend(BezierCurveSegments::new(
Line::new(self.vertices[pi], self.vertices[i]),
left_point,
-right_point,
delta,
));
}
self.vertices = bezierized_vertices;
}
}
struct PolygonPointsIteratorMut<'a> {
source: &'a mut Polygon,
start: *mut Point,
end: *mut Point,
}
impl<'a> Iterator for PolygonPointsIteratorMut<'a> {
type Item = &'a mut Point;
fn next(&mut self) -> Option<<Self as Iterator>::Item> {
if self.start == self.end {
None
} else {
unsafe {
let result = &mut *self.start;
self.start = self.start.add(1);
Some(result)
}
}
}
}
impl<'a> Drop for PolygonPointsIteratorMut<'a> {
fn drop(&mut self) {
self.source.force_close();
}
}
impl From<Vec<Point>> for Polygon {
fn from(mut v: Vec<Point>) -> Self {
if !v.is_empty() && v[0] != v[v.len() - 1] {
let start = v[0];
v.push(start)
}
Self { vertices: v }
}
}
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
pub struct Ray {
pub start: Point,
pub direction: Point,
}
impl Ray {
#[inline]
pub const fn new(start: Point, direction: Point) -> Ray {
Self { start, direction }
}
#[inline]
pub const fn tangent_mul(&self, x: i32) -> i32 {
self.direction.tangent_mul(x)
}
#[inline]
pub const fn cotangent_mul(&self, y: i32) -> i32 {
self.direction.cotangent_mul(y)
}
#[inline]
pub fn orientation(&self, point: Point) -> i32 {
(point - self.start).cross(self.direction).signum()
}
}
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
pub struct Line {
pub start: Point,
pub end: Point,
}
impl Line {
pub const ZERO: Self = Self::new(Point::ZERO, Point::ZERO);
#[inline]
pub const fn new(start: Point, end: Point) -> Self {
Self { start, end }
}
#[inline]
pub fn center(&self) -> Point {
(self.start + self.end) / 2
}
#[inline]
pub fn scaled_direction(&self) -> Point {
self.end - self.start
}
#[inline]
pub fn scaled_normal(&self) -> Point {
self.scaled_direction().rotate90()
}
#[inline]
pub fn to_ray(&self) -> Ray {
Ray::new(self.start, self.scaled_direction())
}
}
impl IntoIterator for Line {
type Item = Point;
type IntoIter = LinePoints;
fn into_iter(self) -> Self::IntoIter {
LinePoints::new(self)
}
}
pub struct LinePoints {
accumulator: Point,
direction: Point,
sign: Point,
current: Point,
total_steps: i32,
step: i32,
}
impl LinePoints {
pub fn new(line: Line) -> Self {
let dir = line.end - line.start;
Self {
accumulator: Point::ZERO,
direction: dir.abs(),
sign: dir.signum(),
current: line.start,
total_steps: dir.max_norm(),
step: 0,
}
}
}
impl Iterator for LinePoints {
type Item = Point;
fn next(&mut self) -> Option<Self::Item> {
if self.step <= self.total_steps {
self.accumulator += self.direction;
if self.accumulator.x > self.total_steps {
self.accumulator.x -= self.total_steps;
self.current.x += self.sign.x;
}
if self.accumulator.y > self.total_steps {
self.accumulator.y -= self.total_steps;
self.current.y += self.sign.y;
}
self.step += 1;
Some(self.current)
} else {
None
}
}
}
pub struct ArcPoints {
point: Point,
step: i32,
}
impl ArcPoints {
pub const fn new(radius: i32) -> Self {
Self {
point: Point::new(0, radius),
step: 3 - 2 * radius,
}
}
}
impl Iterator for ArcPoints {
type Item = Point;
fn next(&mut self) -> Option<Self::Item> {
if self.point.x < self.point.y {
let result = self.point;
if self.step < 0 {
self.step += self.point.x * 4 + 6;
} else {
self.step += (self.point.x - self.point.y) * 4 + 10;
self.point.y -= 1;
}
self.point.x += 1;
Some(result)
} else if self.point.x == self.point.y {
self.point.x += 1;
Some(self.point)
} else {
None
}
}
}
pub struct EquidistantPoints {
vector: Vec<Point>,
}
impl EquidistantPoints {
pub fn new(vector: Point) -> Self {
Self {
vector: if vector.x == vector.y {
vec![
Point::new(vector.x, vector.x),
Point::new(vector.x, -vector.x),
Point::new(-vector.x, -vector.x),
Point::new(-vector.x, vector.x),
]
} else {
vec![
Point::new(vector.x, vector.y),
Point::new(vector.x, -vector.y),
Point::new(-vector.x, -vector.y),
Point::new(-vector.x, vector.y),
Point::new(vector.y, vector.x),
Point::new(vector.y, -vector.x),
Point::new(-vector.y, -vector.x),
Point::new(-vector.y, vector.x),
]
},
}
}
}
impl IntoIterator for EquidistantPoints {
type Item = Point;
type IntoIter = std::vec::IntoIter<Point>;
fn into_iter(self) -> Self::IntoIter {
self.vector.into_iter()
}
}
pub struct BezierCurveSegments {
segment: Line,
control_point1: FPPoint,
control_point2: FPPoint,
offset: FPNum,
max_offset: FPNum,
delta: FPNum,
have_finished: bool,
}
impl BezierCurveSegments {
pub fn new(segment: Line, p1: FPPoint, p2: FPPoint, delta: FPNum) -> Self {
Self {
segment,
control_point1: segment.start.to_fppoint() - p1,
control_point2: segment.end.to_fppoint() - p2,
offset: fp!(0),
max_offset: fp!(4095 / 4096),
delta,
have_finished: false,
}
}
}
impl Iterator for BezierCurveSegments {
type Item = Point;
fn next(&mut self) -> Option<Self::Item> {
if self.offset < self.max_offset {
let offset_sq = self.offset * self.offset;
let offset_cub = offset_sq * self.offset;
let r1 = fp!(1) - self.offset * 3 + offset_sq * 3 - offset_cub;
let r2 = self.offset * 3 - offset_sq * 6 + offset_cub * 3;
let r3 = offset_sq * 3 - offset_cub * 3;
let p = r1 * self.segment.start
+ r2 * self.control_point1
+ r3 * self.control_point2
+ offset_cub * self.segment.end;
self.offset += self.delta;
Some(Point::from_fppoint(&p))
} else if !self.have_finished {
self.have_finished = true;
Some(self.segment.end)
} else {
None
}
}
}
#[cfg(test)]
mod tests {
use super::*;
fn get_points(coords: &[(i32, i32)]) -> Vec<Point> {
coords.iter().map(|(x, y)| Point::new(*x, *y)).collect()
}
#[test]
fn line_basic() {
let line: Vec<Point> = Line::new(Point::new(0, 0), Point::new(3, 3))
.into_iter()
.collect();
let v = get_points(&[(0, 0), (1, 1), (2, 2), (3, 3)]);
assert_eq!(line, v);
}
#[test]
fn line_skewed() {
let line: Vec<Point> = Line::new(Point::new(0, 0), Point::new(5, -7))
.into_iter()
.collect();
let v = get_points(&[
(0, 0),
(1, -1),
(2, -2),
(2, -3),
(3, -4),
(4, -5),
(4, -6),
(5, -7),
]);
assert_eq!(line, v);
}
#[test]
fn equidistant_full() {
let n: Vec<Point> = EquidistantPoints::new(Point::new(1, 3))
.into_iter()
.collect();
let v = get_points(&[
(1, 3),
(1, -3),
(-1, -3),
(-1, 3),
(3, 1),
(3, -1),
(-3, -1),
(-3, 1),
]);
assert_eq!(n, v);
}
#[test]
fn equidistant_half() {
let n: Vec<Point> = EquidistantPoints::new(Point::new(2, 2))
.into_iter()
.collect();
let v = get_points(&[(2, 2), (2, -2), (-2, -2), (-2, 2)]);
assert_eq!(n, v);
}
#[test]
fn line() {
let l = Line::new(Point::new(1, 1), Point::new(5, 6));
assert_eq!(l.center(), Point::new(3, 3));
}
#[test]
fn rect() {
let r = Rect::from_box(10, 100, 0, 70);
assert!(r.contains_inside(Point::new(99, 69)));
assert!(!r.contains_inside(Point::new(100, 70)));
assert_eq!(r.top_left(), Point::new(10, 0));
assert_eq!(r.with_margin(12), Rect::from_box(22, 88, 12, 58));
}
#[test]
fn fit() {
let r = Rect::from_box(10, 100, 0, 70);
assert_eq!(Point::new(0, -10).clamp(&r), Point::new(10, 0));
assert_eq!(Point::new(1000, 1000).clamp(&r), Point::new(100, 70));
}
}