misc/liblua/lcode.c
author Wuzzy <Wuzzy2@mail.ru>
Mon, 17 Sep 2018 22:37:47 +0200
changeset 13790 4ed202f0428e
parent 10017 de822cd3df3a
permissions -rw-r--r--
Easier back jumps in Basic Movement Training (fixes bug #692) The explanation of Back Jumping (2/2) has been simplified and the "hard" part has been made easier by lowering the girders. The original idea was that I wanted to force players to learn how to jump higher by delaying the 2nd backspace keypress. But this turned out that this section was too unfair and we have lost at least one player due to rage-quitting, according to feedback.

/*
** $Id: lcode.c,v 2.25.1.3 2007/12/28 15:32:23 roberto Exp $
** Code generator for Lua
** See Copyright Notice in lua.h
*/


#include <stdlib.h>

#define lcode_c
#define LUA_CORE

#include "lua.h"

#include "lcode.h"
#include "ldebug.h"
#include "ldo.h"
#include "lgc.h"
#include "llex.h"
#include "lmem.h"
#include "lobject.h"
#include "lopcodes.h"
#include "lparser.h"
#include "ltable.h"


#define hasjumps(e) ((e)->t != (e)->f)


static int isnumeral(expdesc *e) {
  return (e->k == VKNUM && e->t == NO_JUMP && e->f == NO_JUMP);
}


void luaK_nil (FuncState *fs, int from, int n) {
  Instruction *previous;
  if (fs->pc > fs->lasttarget) {  /* no jumps to current position? */
    if (fs->pc == 0) {  /* function start? */
      if (from >= fs->nactvar)
        return;  /* positions are already clean */
    }
    else {
      previous = &fs->f->code[fs->pc-1];
      if (GET_OPCODE(*previous) == OP_LOADNIL) {
        int pfrom = GETARG_A(*previous);
        int pto = GETARG_B(*previous);
        if (pfrom <= from && from <= pto+1) {  /* can connect both? */
          if (from+n-1 > pto)
            SETARG_B(*previous, from+n-1);
          return;
        }
      }
    }
  }
  luaK_codeABC(fs, OP_LOADNIL, from, from+n-1, 0);  /* else no optimization */
}


int luaK_jump (FuncState *fs) {
  int jpc = fs->jpc;  /* save list of jumps to here */
  int j;
  fs->jpc = NO_JUMP;
  j = luaK_codeAsBx(fs, OP_JMP, 0, NO_JUMP);
  luaK_concat(fs, &j, jpc);  /* keep them on hold */
  return j;
}


void luaK_ret (FuncState *fs, int first, int nret) {
  luaK_codeABC(fs, OP_RETURN, first, nret+1, 0);
}


static int condjump (FuncState *fs, OpCode op, int A, int B, int C) {
  luaK_codeABC(fs, op, A, B, C);
  return luaK_jump(fs);
}


static void fixjump (FuncState *fs, int pc, int dest) {
  Instruction *jmp = &fs->f->code[pc];
  int offset = dest-(pc+1);
  lua_assert(dest != NO_JUMP);
  if (abs(offset) > MAXARG_sBx)
    luaX_syntaxerror(fs->ls, "control structure too long");
  SETARG_sBx(*jmp, offset);
}


/*
** returns current `pc' and marks it as a jump target (to avoid wrong
** optimizations with consecutive instructions not in the same basic block).
*/
int luaK_getlabel (FuncState *fs) {
  fs->lasttarget = fs->pc;
  return fs->pc;
}


static int getjump (FuncState *fs, int pc) {
  int offset = GETARG_sBx(fs->f->code[pc]);
  if (offset == NO_JUMP)  /* point to itself represents end of list */
    return NO_JUMP;  /* end of list */
  else
    return (pc+1)+offset;  /* turn offset into absolute position */
}


static Instruction *getjumpcontrol (FuncState *fs, int pc) {
  Instruction *pi = &fs->f->code[pc];
  if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1))))
    return pi-1;
  else
    return pi;
}


/*
** check whether list has any jump that do not produce a value
** (or produce an inverted value)
*/
static int need_value (FuncState *fs, int list) {
  for (; list != NO_JUMP; list = getjump(fs, list)) {
    Instruction i = *getjumpcontrol(fs, list);
    if (GET_OPCODE(i) != OP_TESTSET) return 1;
  }
  return 0;  /* not found */
}


static int patchtestreg (FuncState *fs, int node, int reg) {
  Instruction *i = getjumpcontrol(fs, node);
  if (GET_OPCODE(*i) != OP_TESTSET)
    return 0;  /* cannot patch other instructions */
  if (reg != NO_REG && reg != GETARG_B(*i))
    SETARG_A(*i, reg);
  else  /* no register to put value or register already has the value */
    *i = CREATE_ABC(OP_TEST, GETARG_B(*i), 0, GETARG_C(*i));

  return 1;
}


static void removevalues (FuncState *fs, int list) {
  for (; list != NO_JUMP; list = getjump(fs, list))
      patchtestreg(fs, list, NO_REG);
}


static void patchlistaux (FuncState *fs, int list, int vtarget, int reg,
                          int dtarget) {
  while (list != NO_JUMP) {
    int next = getjump(fs, list);
    if (patchtestreg(fs, list, reg))
      fixjump(fs, list, vtarget);
    else
      fixjump(fs, list, dtarget);  /* jump to default target */
    list = next;
  }
}


static void dischargejpc (FuncState *fs) {
  patchlistaux(fs, fs->jpc, fs->pc, NO_REG, fs->pc);
  fs->jpc = NO_JUMP;
}


void luaK_patchlist (FuncState *fs, int list, int target) {
  if (target == fs->pc)
    luaK_patchtohere(fs, list);
  else {
    lua_assert(target < fs->pc);
    patchlistaux(fs, list, target, NO_REG, target);
  }
}


void luaK_patchtohere (FuncState *fs, int list) {
  luaK_getlabel(fs);
  luaK_concat(fs, &fs->jpc, list);
}


void luaK_concat (FuncState *fs, int *l1, int l2) {
  if (l2 == NO_JUMP) return;
  else if (*l1 == NO_JUMP)
    *l1 = l2;
  else {
    int list = *l1;
    int next;
    while ((next = getjump(fs, list)) != NO_JUMP)  /* find last element */
      list = next;
    fixjump(fs, list, l2);
  }
}


void luaK_checkstack (FuncState *fs, int n) {
  int newstack = fs->freereg + n;
  if (newstack > fs->f->maxstacksize) {
    if (newstack >= MAXSTACK)
      luaX_syntaxerror(fs->ls, "function or expression too complex");
    fs->f->maxstacksize = cast_byte(newstack);
  }
}


void luaK_reserveregs (FuncState *fs, int n) {
  luaK_checkstack(fs, n);
  fs->freereg += n;
}


static void freereg (FuncState *fs, int reg) {
  if (!ISK(reg) && reg >= fs->nactvar) {
    fs->freereg--;
    lua_assert(reg == fs->freereg);
  }
}


static void freeexp (FuncState *fs, expdesc *e) {
  if (e->k == VNONRELOC)
    freereg(fs, e->u.s.info);
}


static int addk (FuncState *fs, TValue *k, TValue *v) {
  lua_State *L = fs->L;
  TValue *idx = luaH_set(L, fs->h, k);
  Proto *f = fs->f;
  int oldsize = f->sizek;
  if (ttisnumber(idx)) {
    lua_assert(luaO_rawequalObj(&fs->f->k[cast_int(nvalue(idx))], v));
    return cast_int(nvalue(idx));
  }
  else {  /* constant not found; create a new entry */
    setnvalue(idx, cast_num(fs->nk));
    luaM_growvector(L, f->k, fs->nk, f->sizek, TValue,
                    MAXARG_Bx, "constant table overflow");
    while (oldsize < f->sizek) setnilvalue(&f->k[oldsize++]);
    setobj(L, &f->k[fs->nk], v);
    luaC_barrier(L, f, v);
    return fs->nk++;
  }
}


int luaK_stringK (FuncState *fs, TString *s) {
  TValue o;
  setsvalue(fs->L, &o, s);
  return addk(fs, &o, &o);
}


int luaK_numberK (FuncState *fs, lua_Number r) {
  TValue o;
  setnvalue(&o, r);
  return addk(fs, &o, &o);
}


static int boolK (FuncState *fs, int b) {
  TValue o;
  setbvalue(&o, b);
  return addk(fs, &o, &o);
}


static int nilK (FuncState *fs) {
  TValue k, v;
  setnilvalue(&v);
  /* cannot use nil as key; instead use table itself to represent nil */
  sethvalue(fs->L, &k, fs->h);
  return addk(fs, &k, &v);
}


void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) {
  if (e->k == VCALL) {  /* expression is an open function call? */
    SETARG_C(getcode(fs, e), nresults+1);
  }
  else if (e->k == VVARARG) {
    SETARG_B(getcode(fs, e), nresults+1);
    SETARG_A(getcode(fs, e), fs->freereg);
    luaK_reserveregs(fs, 1);
  }
}


void luaK_setoneret (FuncState *fs, expdesc *e) {
  if (e->k == VCALL) {  /* expression is an open function call? */
    e->k = VNONRELOC;
    e->u.s.info = GETARG_A(getcode(fs, e));
  }
  else if (e->k == VVARARG) {
    SETARG_B(getcode(fs, e), 2);
    e->k = VRELOCABLE;  /* can relocate its simple result */
  }
}


void luaK_dischargevars (FuncState *fs, expdesc *e) {
  switch (e->k) {
    case VLOCAL: {
      e->k = VNONRELOC;
      break;
    }
    case VUPVAL: {
      e->u.s.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.s.info, 0);
      e->k = VRELOCABLE;
      break;
    }
    case VGLOBAL: {
      e->u.s.info = luaK_codeABx(fs, OP_GETGLOBAL, 0, e->u.s.info);
      e->k = VRELOCABLE;
      break;
    }
    case VINDEXED: {
      freereg(fs, e->u.s.aux);
      freereg(fs, e->u.s.info);
      e->u.s.info = luaK_codeABC(fs, OP_GETTABLE, 0, e->u.s.info, e->u.s.aux);
      e->k = VRELOCABLE;
      break;
    }
    case VVARARG:
    case VCALL: {
      luaK_setoneret(fs, e);
      break;
    }
    default: break;  /* there is one value available (somewhere) */
  }
}


static int code_label (FuncState *fs, int A, int b, int jump) {
  luaK_getlabel(fs);  /* those instructions may be jump targets */
  return luaK_codeABC(fs, OP_LOADBOOL, A, b, jump);
}


static void discharge2reg (FuncState *fs, expdesc *e, int reg) {
  luaK_dischargevars(fs, e);
  switch (e->k) {
    case VNIL: {
      luaK_nil(fs, reg, 1);
      break;
    }
    case VFALSE:  case VTRUE: {
      luaK_codeABC(fs, OP_LOADBOOL, reg, e->k == VTRUE, 0);
      break;
    }
    case VK: {
      luaK_codeABx(fs, OP_LOADK, reg, e->u.s.info);
      break;
    }
    case VKNUM: {
      luaK_codeABx(fs, OP_LOADK, reg, luaK_numberK(fs, e->u.nval));
      break;
    }
    case VRELOCABLE: {
      Instruction *pc = &getcode(fs, e);
      SETARG_A(*pc, reg);
      break;
    }
    case VNONRELOC: {
      if (reg != e->u.s.info)
        luaK_codeABC(fs, OP_MOVE, reg, e->u.s.info, 0);
      break;
    }
    default: {
      lua_assert(e->k == VVOID || e->k == VJMP);
      return;  /* nothing to do... */
    }
  }
  e->u.s.info = reg;
  e->k = VNONRELOC;
}


static void discharge2anyreg (FuncState *fs, expdesc *e) {
  if (e->k != VNONRELOC) {
    luaK_reserveregs(fs, 1);
    discharge2reg(fs, e, fs->freereg-1);
  }
}


static void exp2reg (FuncState *fs, expdesc *e, int reg) {
  discharge2reg(fs, e, reg);
  if (e->k == VJMP)
    luaK_concat(fs, &e->t, e->u.s.info);  /* put this jump in `t' list */
  if (hasjumps(e)) {
    int final;  /* position after whole expression */
    int p_f = NO_JUMP;  /* position of an eventual LOAD false */
    int p_t = NO_JUMP;  /* position of an eventual LOAD true */
    if (need_value(fs, e->t) || need_value(fs, e->f)) {
      int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs);
      p_f = code_label(fs, reg, 0, 1);
      p_t = code_label(fs, reg, 1, 0);
      luaK_patchtohere(fs, fj);
    }
    final = luaK_getlabel(fs);
    patchlistaux(fs, e->f, final, reg, p_f);
    patchlistaux(fs, e->t, final, reg, p_t);
  }
  e->f = e->t = NO_JUMP;
  e->u.s.info = reg;
  e->k = VNONRELOC;
}


void luaK_exp2nextreg (FuncState *fs, expdesc *e) {
  luaK_dischargevars(fs, e);
  freeexp(fs, e);
  luaK_reserveregs(fs, 1);
  exp2reg(fs, e, fs->freereg - 1);
}


int luaK_exp2anyreg (FuncState *fs, expdesc *e) {
  luaK_dischargevars(fs, e);
  if (e->k == VNONRELOC) {
    if (!hasjumps(e)) return e->u.s.info;  /* exp is already in a register */
    if (e->u.s.info >= fs->nactvar) {  /* reg. is not a local? */
      exp2reg(fs, e, e->u.s.info);  /* put value on it */
      return e->u.s.info;
    }
  }
  luaK_exp2nextreg(fs, e);  /* default */
  return e->u.s.info;
}


void luaK_exp2val (FuncState *fs, expdesc *e) {
  if (hasjumps(e))
    luaK_exp2anyreg(fs, e);
  else
    luaK_dischargevars(fs, e);
}


int luaK_exp2RK (FuncState *fs, expdesc *e) {
  luaK_exp2val(fs, e);
  switch (e->k) {
    case VKNUM:
    case VTRUE:
    case VFALSE:
    case VNIL: {
      if (fs->nk <= MAXINDEXRK) {  /* constant fit in RK operand? */
        e->u.s.info = (e->k == VNIL)  ? nilK(fs) :
                      (e->k == VKNUM) ? luaK_numberK(fs, e->u.nval) :
                                        boolK(fs, (e->k == VTRUE));
        e->k = VK;
        return RKASK(e->u.s.info);
      }
      else break;
    }
    case VK: {
      if (e->u.s.info <= MAXINDEXRK)  /* constant fit in argC? */
        return RKASK(e->u.s.info);
      else break;
    }
    default: break;
  }
  /* not a constant in the right range: put it in a register */
  return luaK_exp2anyreg(fs, e);
}


void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) {
  switch (var->k) {
    case VLOCAL: {
      freeexp(fs, ex);
      exp2reg(fs, ex, var->u.s.info);
      return;
    }
    case VUPVAL: {
      int e = luaK_exp2anyreg(fs, ex);
      luaK_codeABC(fs, OP_SETUPVAL, e, var->u.s.info, 0);
      break;
    }
    case VGLOBAL: {
      int e = luaK_exp2anyreg(fs, ex);
      luaK_codeABx(fs, OP_SETGLOBAL, e, var->u.s.info);
      break;
    }
    case VINDEXED: {
      int e = luaK_exp2RK(fs, ex);
      luaK_codeABC(fs, OP_SETTABLE, var->u.s.info, var->u.s.aux, e);
      break;
    }
    default: {
      lua_assert(0);  /* invalid var kind to store */
      break;
    }
  }
  freeexp(fs, ex);
}


void luaK_self (FuncState *fs, expdesc *e, expdesc *key) {
  int func;
  luaK_exp2anyreg(fs, e);
  freeexp(fs, e);
  func = fs->freereg;
  luaK_reserveregs(fs, 2);
  luaK_codeABC(fs, OP_SELF, func, e->u.s.info, luaK_exp2RK(fs, key));
  freeexp(fs, key);
  e->u.s.info = func;
  e->k = VNONRELOC;
}


static void invertjump (FuncState *fs, expdesc *e) {
  Instruction *pc = getjumpcontrol(fs, e->u.s.info);
  lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET &&
                                           GET_OPCODE(*pc) != OP_TEST);
  SETARG_A(*pc, !(GETARG_A(*pc)));
}


static int jumponcond (FuncState *fs, expdesc *e, int cond) {
  if (e->k == VRELOCABLE) {
    Instruction ie = getcode(fs, e);
    if (GET_OPCODE(ie) == OP_NOT) {
      fs->pc--;  /* remove previous OP_NOT */
      return condjump(fs, OP_TEST, GETARG_B(ie), 0, !cond);
    }
    /* else go through */
  }
  discharge2anyreg(fs, e);
  freeexp(fs, e);
  return condjump(fs, OP_TESTSET, NO_REG, e->u.s.info, cond);
}


void luaK_goiftrue (FuncState *fs, expdesc *e) {
  int pc;  /* pc of last jump */
  luaK_dischargevars(fs, e);
  switch (e->k) {
    case VK: case VKNUM: case VTRUE: {
      pc = NO_JUMP;  /* always true; do nothing */
      break;
    }
    case VFALSE: {
      pc = luaK_jump(fs);  /* always jump */
      break;
    }
    case VJMP: {
      invertjump(fs, e);
      pc = e->u.s.info;
      break;
    }
    default: {
      pc = jumponcond(fs, e, 0);
      break;
    }
  }
  luaK_concat(fs, &e->f, pc);  /* insert last jump in `f' list */
  luaK_patchtohere(fs, e->t);
  e->t = NO_JUMP;
}


static void luaK_goiffalse (FuncState *fs, expdesc *e) {
  int pc;  /* pc of last jump */
  luaK_dischargevars(fs, e);
  switch (e->k) {
    case VNIL: case VFALSE: {
      pc = NO_JUMP;  /* always false; do nothing */
      break;
    }
    case VTRUE: {
      pc = luaK_jump(fs);  /* always jump */
      break;
    }
    case VJMP: {
      pc = e->u.s.info;
      break;
    }
    default: {
      pc = jumponcond(fs, e, 1);
      break;
    }
  }
  luaK_concat(fs, &e->t, pc);  /* insert last jump in `t' list */
  luaK_patchtohere(fs, e->f);
  e->f = NO_JUMP;
}


static void codenot (FuncState *fs, expdesc *e) {
  luaK_dischargevars(fs, e);
  switch (e->k) {
    case VNIL: case VFALSE: {
      e->k = VTRUE;
      break;
    }
    case VK: case VKNUM: case VTRUE: {
      e->k = VFALSE;
      break;
    }
    case VJMP: {
      invertjump(fs, e);
      break;
    }
    case VRELOCABLE:
    case VNONRELOC: {
      discharge2anyreg(fs, e);
      freeexp(fs, e);
      e->u.s.info = luaK_codeABC(fs, OP_NOT, 0, e->u.s.info, 0);
      e->k = VRELOCABLE;
      break;
    }
    default: {
      lua_assert(0);  /* cannot happen */
      break;
    }
  }
  /* interchange true and false lists */
  { int temp = e->f; e->f = e->t; e->t = temp; }
  removevalues(fs, e->f);
  removevalues(fs, e->t);
}


void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) {
  t->u.s.aux = luaK_exp2RK(fs, k);
  t->k = VINDEXED;
}


static int constfolding (OpCode op, expdesc *e1, expdesc *e2) {
  lua_Number v1, v2, r;
  if (!isnumeral(e1) || !isnumeral(e2)) return 0;
  v1 = e1->u.nval;
  v2 = e2->u.nval;
  switch (op) {
    case OP_ADD: r = luai_numadd(v1, v2); break;
    case OP_SUB: r = luai_numsub(v1, v2); break;
    case OP_MUL: r = luai_nummul(v1, v2); break;
    case OP_DIV:
      if (v2 == 0) return 0;  /* do not attempt to divide by 0 */
      r = luai_numdiv(v1, v2); break;
    case OP_MOD:
      if (v2 == 0) return 0;  /* do not attempt to divide by 0 */
      r = luai_nummod(v1, v2); break;
    case OP_POW: r = luai_numpow(v1, v2); break;
    case OP_UNM: r = luai_numunm(v1); break;
    case OP_LEN: return 0;  /* no constant folding for 'len' */
    default: lua_assert(0); r = 0; break;
  }
  if (luai_numisnan(r)) return 0;  /* do not attempt to produce NaN */
  e1->u.nval = r;
  return 1;
}


static void codearith (FuncState *fs, OpCode op, expdesc *e1, expdesc *e2) {
  if (constfolding(op, e1, e2))
    return;
  else {
    int o2 = (op != OP_UNM && op != OP_LEN) ? luaK_exp2RK(fs, e2) : 0;
    int o1 = luaK_exp2RK(fs, e1);
    if (o1 > o2) {
      freeexp(fs, e1);
      freeexp(fs, e2);
    }
    else {
      freeexp(fs, e2);
      freeexp(fs, e1);
    }
    e1->u.s.info = luaK_codeABC(fs, op, 0, o1, o2);
    e1->k = VRELOCABLE;
  }
}


static void codecomp (FuncState *fs, OpCode op, int cond, expdesc *e1,
                                                          expdesc *e2) {
  int o1 = luaK_exp2RK(fs, e1);
  int o2 = luaK_exp2RK(fs, e2);
  freeexp(fs, e2);
  freeexp(fs, e1);
  if (cond == 0 && op != OP_EQ) {
    int temp;  /* exchange args to replace by `<' or `<=' */
    temp = o1; o1 = o2; o2 = temp;  /* o1 <==> o2 */
    cond = 1;
  }
  e1->u.s.info = condjump(fs, op, cond, o1, o2);
  e1->k = VJMP;
}


void luaK_prefix (FuncState *fs, UnOpr op, expdesc *e) {
  expdesc e2;
  e2.t = e2.f = NO_JUMP; e2.k = VKNUM; e2.u.nval = 0;
  switch (op) {
    case OPR_MINUS: {
      if (!isnumeral(e))
        luaK_exp2anyreg(fs, e);  /* cannot operate on non-numeric constants */
      codearith(fs, OP_UNM, e, &e2);
      break;
    }
    case OPR_NOT: codenot(fs, e); break;
    case OPR_LEN: {
      luaK_exp2anyreg(fs, e);  /* cannot operate on constants */
      codearith(fs, OP_LEN, e, &e2);
      break;
    }
    default: lua_assert(0);
  }
}


void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) {
  switch (op) {
    case OPR_AND: {
      luaK_goiftrue(fs, v);
      break;
    }
    case OPR_OR: {
      luaK_goiffalse(fs, v);
      break;
    }
    case OPR_CONCAT: {
      luaK_exp2nextreg(fs, v);  /* operand must be on the `stack' */
      break;
    }
    case OPR_ADD: case OPR_SUB: case OPR_MUL: case OPR_DIV:
    case OPR_MOD: case OPR_POW: {
      if (!isnumeral(v)) luaK_exp2RK(fs, v);
      break;
    }
    default: {
      luaK_exp2RK(fs, v);
      break;
    }
  }
}


void luaK_posfix (FuncState *fs, BinOpr op, expdesc *e1, expdesc *e2) {
  switch (op) {
    case OPR_AND: {
      lua_assert(e1->t == NO_JUMP);  /* list must be closed */
      luaK_dischargevars(fs, e2);
      luaK_concat(fs, &e2->f, e1->f);
      *e1 = *e2;
      break;
    }
    case OPR_OR: {
      lua_assert(e1->f == NO_JUMP);  /* list must be closed */
      luaK_dischargevars(fs, e2);
      luaK_concat(fs, &e2->t, e1->t);
      *e1 = *e2;
      break;
    }
    case OPR_CONCAT: {
      luaK_exp2val(fs, e2);
      if (e2->k == VRELOCABLE && GET_OPCODE(getcode(fs, e2)) == OP_CONCAT) {
        lua_assert(e1->u.s.info == GETARG_B(getcode(fs, e2))-1);
        freeexp(fs, e1);
        SETARG_B(getcode(fs, e2), e1->u.s.info);
        e1->k = VRELOCABLE; e1->u.s.info = e2->u.s.info;
      }
      else {
        luaK_exp2nextreg(fs, e2);  /* operand must be on the 'stack' */
        codearith(fs, OP_CONCAT, e1, e2);
      }
      break;
    }
    case OPR_ADD: codearith(fs, OP_ADD, e1, e2); break;
    case OPR_SUB: codearith(fs, OP_SUB, e1, e2); break;
    case OPR_MUL: codearith(fs, OP_MUL, e1, e2); break;
    case OPR_DIV: codearith(fs, OP_DIV, e1, e2); break;
    case OPR_MOD: codearith(fs, OP_MOD, e1, e2); break;
    case OPR_POW: codearith(fs, OP_POW, e1, e2); break;
    case OPR_EQ: codecomp(fs, OP_EQ, 1, e1, e2); break;
    case OPR_NE: codecomp(fs, OP_EQ, 0, e1, e2); break;
    case OPR_LT: codecomp(fs, OP_LT, 1, e1, e2); break;
    case OPR_LE: codecomp(fs, OP_LE, 1, e1, e2); break;
    case OPR_GT: codecomp(fs, OP_LT, 0, e1, e2); break;
    case OPR_GE: codecomp(fs, OP_LE, 0, e1, e2); break;
    default: lua_assert(0);
  }
}


void luaK_fixline (FuncState *fs, int line) {
  fs->f->lineinfo[fs->pc - 1] = line;
}


static int luaK_code (FuncState *fs, Instruction i, int line) {
  Proto *f = fs->f;
  dischargejpc(fs);  /* `pc' will change */
  /* put new instruction in code array */
  luaM_growvector(fs->L, f->code, fs->pc, f->sizecode, Instruction,
                  MAX_INT, "code size overflow");
  f->code[fs->pc] = i;
  /* save corresponding line information */
  luaM_growvector(fs->L, f->lineinfo, fs->pc, f->sizelineinfo, int,
                  MAX_INT, "code size overflow");
  f->lineinfo[fs->pc] = line;
  return fs->pc++;
}


int luaK_codeABC (FuncState *fs, OpCode o, int a, int b, int c) {
  lua_assert(getOpMode(o) == iABC);
  lua_assert(getBMode(o) != OpArgN || b == 0);
  lua_assert(getCMode(o) != OpArgN || c == 0);
  return luaK_code(fs, CREATE_ABC(o, a, b, c), fs->ls->lastline);
}


int luaK_codeABx (FuncState *fs, OpCode o, int a, unsigned int bc) {
  lua_assert(getOpMode(o) == iABx || getOpMode(o) == iAsBx);
  lua_assert(getCMode(o) == OpArgN);
  return luaK_code(fs, CREATE_ABx(o, a, bc), fs->ls->lastline);
}


void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) {
  int c =  (nelems - 1)/LFIELDS_PER_FLUSH + 1;
  int b = (tostore == LUA_MULTRET) ? 0 : tostore;
  lua_assert(tostore != 0);
  if (c <= MAXARG_C)
    luaK_codeABC(fs, OP_SETLIST, base, b, c);
  else {
    luaK_codeABC(fs, OP_SETLIST, base, b, 0);
    luaK_code(fs, cast(Instruction, c), fs->ls->lastline);
  }
  fs->freereg = base + 1;  /* free registers with list values */
}