rust/integral-geometry/src/lib.rs
branchhedgeroid
changeset 15515 7030706266df
parent 15389 1c6d5656157c
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/rust/integral-geometry/src/lib.rs	Fri Dec 06 22:20:53 2019 +0100
@@ -0,0 +1,987 @@
+use fpnum::{fp, integral_sqrt, FPNum, FPPoint};
+use std::{
+    cmp::{max, min},
+    ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, RangeInclusive, Sub, SubAssign},
+};
+
+#[derive(PartialEq, Eq, Clone, Copy, Debug)]
+pub struct Point {
+    pub x: i32,
+    pub y: i32,
+}
+
+impl Point {
+    pub const ZERO: Self = Self::new(0, 0);
+
+    #[inline]
+    pub const fn new(x: i32, y: i32) -> Self {
+        Self { x, y }
+    }
+
+    #[inline]
+    pub const fn diag(v: i32) -> Self {
+        Self::new(v, v)
+    }
+
+    #[inline]
+    pub fn signum(self) -> Self {
+        Self::new(self.x.signum(), self.y.signum())
+    }
+
+    #[inline]
+    pub fn abs(self) -> Self {
+        Self::new(self.x.abs(), self.y.abs())
+    }
+
+    #[inline]
+    pub const fn dot(self, other: Point) -> i32 {
+        self.x * other.x + self.y * other.y
+    }
+
+    #[inline]
+    pub fn max_norm(self) -> i32 {
+        std::cmp::max(self.x.abs(), self.y.abs())
+    }
+
+    #[inline]
+    pub fn integral_norm(self) -> u32 {
+        let sqr = (self.x as u64).wrapping_pow(2) + (self.y as u64).wrapping_pow(2);
+        integral_sqrt(sqr) as u32
+    }
+
+    #[inline]
+    pub const fn transform(self, matrix: &[i32; 4]) -> Self {
+        Point::new(
+            matrix[0] * self.x + matrix[1] * self.y,
+            matrix[2] * self.x + matrix[3] * self.y,
+        )
+    }
+
+    #[inline]
+    pub const fn rotate90(self) -> Self {
+        Point::new(self.y, -self.x)
+    }
+
+    #[inline]
+    pub const fn cross(self, other: Point) -> i32 {
+        self.dot(other.rotate90())
+    }
+
+    #[inline]
+    pub fn clamp(self, rect: &Rect) -> Point {
+        Point::new(rect.x_range().clamp(self.x), rect.y_range().clamp(self.y))
+    }
+
+    #[inline]
+    pub const fn line_to(self, end: Point) -> Line {
+        Line::new(self, end)
+    }
+
+    #[inline]
+    pub const fn ray_with_dir(self, direction: Point) -> Ray {
+        Ray::new(self, direction)
+    }
+
+    #[inline]
+    pub const fn tangent_mul(self, x: i32) -> i32 {
+        x * self.y / self.x
+    }
+
+    #[inline]
+    pub const fn cotangent_mul(self, y: i32) -> i32 {
+        y * self.x / self.y
+    }
+
+    #[inline]
+    pub fn to_fppoint(self) -> FPPoint {
+        FPPoint::new(self.x.into(), self.y.into())
+    }
+
+    #[inline]
+    pub fn from_fppoint(p: &FPPoint) -> Self {
+        Self::new(p.x().round(), p.y().round())
+    }
+}
+
+#[derive(PartialEq, Eq, Clone, Copy, Debug)]
+pub struct Size {
+    pub width: usize,
+    pub height: usize,
+}
+
+impl Size {
+    pub const EMPTY: Self = Self::square(0);
+
+    #[inline]
+    pub const fn new(width: usize, height: usize) -> Self {
+        Self { width, height }
+    }
+
+    #[inline]
+    pub const fn square(size: usize) -> Self {
+        Self {
+            width: size,
+            height: size,
+        }
+    }
+
+    #[inline]
+    pub const fn area(&self) -> usize {
+        self.width * self.height
+    }
+
+    #[inline]
+    pub const fn linear_index(&self, x: usize, y: usize) -> usize {
+        y * self.width + x
+    }
+
+    #[inline]
+    pub fn is_power_of_two(&self) -> bool {
+        self.width.is_power_of_two() && self.height.is_power_of_two()
+    }
+
+    #[inline]
+    pub fn next_power_of_two(&self) -> Self {
+        Self {
+            width: self.width.next_power_of_two(),
+            height: self.height.next_power_of_two(),
+        }
+    }
+
+    #[inline]
+    pub const fn transpose(&self) -> Self {
+        Self::new(self.height, self.width)
+    }
+
+    #[inline]
+    pub fn to_mask(&self) -> SizeMask {
+        SizeMask::new(*self)
+    }
+
+    #[inline]
+    pub fn to_square(&self) -> Self {
+        Self::square(max(self.width, self.height))
+    }
+
+    pub fn to_grid_index(&self) -> GridIndex {
+        GridIndex::new(*self)
+    }
+
+    #[inline]
+    pub fn contains(&self, other: Self) -> bool {
+        self.width >= other.width && self.height >= other.height
+    }
+
+    #[inline]
+    pub fn join(&self, other: Self) -> Self {
+        Self {
+            width: max(self.width, other.width),
+            height: max(self.height, other.height)
+        }
+    }
+}
+
+#[derive(PartialEq, Eq, Clone, Copy, Debug)]
+pub struct SizeMask {
+    size: Size,
+}
+
+impl SizeMask {
+    #[inline]
+    pub fn new(size: Size) -> Self {
+        debug_assert!(size.is_power_of_two());
+        let size = Size {
+            width: !(size.width - 1),
+            height: !(size.height - 1),
+        };
+        Self { size }
+    }
+
+    #[inline]
+    pub fn contains_x<T: Into<usize>>(&self, x: T) -> bool {
+        (self.size.width & x.into()) == 0
+    }
+
+    #[inline]
+    pub fn contains_y<T: Into<usize>>(&self, y: T) -> bool {
+        (self.size.height & y.into()) == 0
+    }
+
+    #[inline]
+    pub fn contains(&self, point: Point) -> bool {
+        self.contains_x(point.x as usize) && self.contains_y(point.y as usize)
+    }
+}
+
+pub struct GridIndex {
+    shift: Point,
+}
+
+impl GridIndex {
+    pub fn new(size: Size) -> Self {
+        assert!(size.is_power_of_two());
+        let shift = Point::new(
+            size.width.trailing_zeros() as i32,
+            size.height.trailing_zeros() as i32,
+        );
+        Self { shift }
+    }
+
+    pub fn map(&self, position: Point) -> Point {
+        Point::new(position.x >> self.shift.x, position.y >> self.shift.y)
+    }
+}
+
+macro_rules! bin_op_impl {
+    ($op: ty, $name: tt) => {
+        impl $op for Point {
+            type Output = Self;
+
+            #[inline]
+            fn $name(self, rhs: Self) -> Self::Output {
+                Self::new(self.x.$name(rhs.x), self.y.$name(rhs.y))
+            }
+        }
+    };
+}
+
+macro_rules! scalar_bin_op_impl {
+    ($($op: tt)::+, $name: tt) => {
+        impl $($op)::+<i32> for Point {
+            type Output = Self;
+
+            #[inline]
+            fn $name(self, rhs: i32) -> Self::Output {
+                Self::new(self.x.$name(rhs), self.y.$name(rhs))
+            }
+        }
+    };
+}
+
+macro_rules! bin_assign_op_impl {
+    ($op: ty, $name: tt) => {
+        impl $op for Point {
+            #[inline]
+            fn $name(&mut self, rhs: Self) {
+                self.x.$name(rhs.x);
+                self.y.$name(rhs.y);
+            }
+        }
+    };
+}
+
+macro_rules! fp_scalar_bin_op_impl {
+    ($($op: tt)::+, $name: tt) => {
+        impl $($op)::+<FPNum> for Point {
+            type Output = FPPoint;
+
+            #[inline]
+            fn $name(self, rhs: FPNum) -> Self::Output {
+                FPPoint::new(rhs.$name(self.x), rhs.$name(self.y))
+            }
+        }
+    };
+}
+
+macro_rules! left_fp_scalar_bin_op_impl {
+    ($($op: tt)::+, $name: tt) => {
+        impl $($op)::+<Point> for FPNum {
+            type Output = FPPoint;
+
+            #[inline]
+            fn $name(self, rhs: Point) -> Self::Output {
+                FPPoint::new(self.$name(rhs.x), self.$name(rhs.y))
+            }
+        }
+    };
+}
+
+bin_op_impl!(Add, add);
+bin_op_impl!(Sub, sub);
+bin_op_impl!(Mul, mul);
+bin_op_impl!(Div, div);
+scalar_bin_op_impl!(Mul, mul);
+scalar_bin_op_impl!(Div, div);
+fp_scalar_bin_op_impl!(Mul, mul);
+fp_scalar_bin_op_impl!(Div, div);
+left_fp_scalar_bin_op_impl!(Mul, mul);
+left_fp_scalar_bin_op_impl!(Div, div);
+bin_assign_op_impl!(AddAssign, add_assign);
+bin_assign_op_impl!(SubAssign, sub_assign);
+bin_assign_op_impl!(MulAssign, mul_assign);
+bin_assign_op_impl!(DivAssign, div_assign);
+
+#[derive(PartialEq, Eq, Clone, Copy, Debug)]
+pub struct Rect {
+    top_left: Point,
+    bottom_right: Point,
+}
+
+impl Rect {
+    pub const EMPTY: Self = Self {
+        top_left: Point::ZERO,
+        bottom_right: Point::diag(-1),
+    };
+
+    #[inline]
+    pub fn new(top_left: Point, bottom_right: Point) -> Self {
+        debug_assert!(top_left.x <= bottom_right.x + 1);
+        debug_assert!(top_left.y <= bottom_right.y + 1);
+        Self {
+            top_left,
+            bottom_right,
+        }
+    }
+
+    pub fn from_box(left: i32, right: i32, top: i32, bottom: i32) -> Self {
+        Self::new(Point::new(left, top), Point::new(right, bottom))
+    }
+
+    pub fn from_size(top_left: Point, size: Size) -> Self {
+        Self::new(
+            top_left,
+            top_left + Point::new(size.width as i32 - 1, size.height as i32 - 1),
+        )
+    }
+
+    pub fn from_size_coords(x: i32, y: i32, width: usize, height: usize) -> Self {
+        Self::from_size(Point::new(x, y), Size::new(width, height))
+    }
+
+    pub fn at_origin(size: Size) -> Self {
+        Self::from_size(Point::ZERO, size)
+    }
+
+    #[inline]
+    pub const fn width(&self) -> usize {
+        (self.right() - self.left() + 1) as usize
+    }
+
+    #[inline]
+    pub const fn height(&self) -> usize {
+        (self.bottom() - self.top() + 1) as usize
+    }
+
+    #[inline]
+    pub const fn size(&self) -> Size {
+        Size::new(self.width(), self.height())
+    }
+
+    #[inline]
+    pub const fn area(&self) -> usize {
+        self.size().area()
+    }
+
+    #[inline]
+    pub const fn left(&self) -> i32 {
+        self.top_left().x
+    }
+
+    #[inline]
+    pub const fn top(&self) -> i32 {
+        self.top_left().y
+    }
+
+    #[inline]
+    pub const fn right(&self) -> i32 {
+        self.bottom_right().x
+    }
+
+    #[inline]
+    pub const fn bottom(&self) -> i32 {
+        self.bottom_right().y
+    }
+
+    #[inline]
+    pub const fn top_left(&self) -> Point {
+        self.top_left
+    }
+
+    #[inline]
+    pub const fn bottom_right(&self) -> Point {
+        self.bottom_right
+    }
+
+    #[inline]
+    pub fn center(&self) -> Point {
+        (self.top_left() + self.bottom_right()) / 2
+    }
+
+    #[inline]
+    pub fn with_margin(&self, margin: i32) -> Self {
+        let offset = Point::diag(margin);
+        Self::new(self.top_left() + offset, self.bottom_right() - offset)
+    }
+
+    #[inline]
+    pub fn x_range(&self) -> RangeInclusive<i32> {
+        self.left()..=self.right()
+    }
+
+    #[inline]
+    pub fn y_range(&self) -> RangeInclusive<i32> {
+        self.top()..=self.bottom()
+    }
+
+    #[inline]
+    pub fn contains(&self, point: Point) -> bool {
+        self.x_range().contains(&point.x) && self.y_range().contains(&point.y)
+    }
+
+    #[inline]
+    pub fn contains_inside(&self, point: Point) -> bool {
+        point.x > self.left()
+            && point.x < self.right()
+            && point.y > self.top()
+            && point.y < self.bottom()
+    }
+
+    #[inline]
+    pub fn contains_rect(&self, other: &Self) -> bool {
+        self.contains(other.top_left()) && self.contains(other.bottom_right())
+    }
+
+    #[inline]
+    pub fn intersects(&self, other: &Rect) -> bool {
+        self.left() <= other.right()
+            && self.right() >= other.left()
+            && self.top() <= other.bottom()
+            && self.bottom() >= other.top()
+    }
+
+    #[inline]
+    pub fn split_at(&self, point: Point) -> [Rect; 4] {
+        assert!(self.contains_inside(point));
+        [
+            Self::from_box(self.left(), point.x, self.top(), point.y),
+            Self::from_box(point.x, self.right(), self.top(), point.y),
+            Self::from_box(point.x, self.right(), point.y, self.bottom()),
+            Self::from_box(self.left(), point.x, point.y, self.bottom()),
+        ]
+    }
+
+    #[inline]
+    pub fn with_margins(&self, left: i32, right: i32, top: i32, bottom: i32) -> Self {
+        Self::from_box(
+            self.left() - left,
+            self.right() + right,
+            self.top() - top,
+            self.bottom() + bottom,
+        )
+    }
+
+    #[inline]
+    pub fn quotient(self, x: usize, y: usize) -> Point {
+        self.top_left() + Point::new((x % self.width()) as i32, (y % self.height()) as i32)
+    }
+}
+
+trait RangeClamp<T> {
+    fn clamp(&self, value: T) -> T;
+}
+
+impl<T: Ord + Copy> RangeClamp<T> for RangeInclusive<T> {
+    fn clamp(&self, value: T) -> T {
+        if value < *self.start() {
+            *self.start()
+        } else if value > *self.end() {
+            *self.end()
+        } else {
+            value
+        }
+    }
+}
+
+pub struct Polygon {
+    vertices: Vec<Point>,
+}
+
+impl Polygon {
+    pub fn new(vertices: &[Point]) -> Self {
+        let mut v = Vec::with_capacity(vertices.len() + 1);
+        v.extend_from_slice(vertices);
+        if !v.is_empty() {
+            let start = v[0];
+            v.push(start);
+        }
+        Self { vertices: v }
+    }
+
+    pub fn edges_count(&self) -> usize {
+        self.vertices.len().saturating_sub(1)
+    }
+
+    pub fn get_edge(&self, index: usize) -> Line {
+        Line::new(self.vertices[index], self.vertices[index + 1])
+    }
+
+    pub fn split_edge(&mut self, edge_index: usize, vertex: Point) {
+        self.vertices.insert(edge_index + 1, vertex);
+    }
+
+    pub fn iter<'a>(&'a self) -> impl Iterator<Item = &Point> + 'a {
+        (&self.vertices[..self.edges_count()]).iter()
+    }
+
+    pub fn iter_mut<'a>(&'a mut self) -> impl Iterator<Item = &mut Point> + 'a {
+        let edges_count = self.edges_count();
+        let start = self.vertices.as_mut_ptr();
+        let end = unsafe { start.add(edges_count) };
+        PolygonPointsIteratorMut {
+            source: self,
+            start,
+            end,
+        }
+    }
+
+    fn force_close(&mut self) {
+        if !self.vertices.is_empty() {
+            let edges_count = self.edges_count();
+            self.vertices[edges_count] = self.vertices[0];
+        }
+    }
+
+    pub fn iter_edges<'a>(&'a self) -> impl Iterator<Item = Line> + 'a {
+        (&self.vertices[0..self.edges_count()])
+            .iter()
+            .zip(&self.vertices[1..])
+            .map(|(s, e)| Line::new(*s, *e))
+    }
+
+    pub fn bezierize(&mut self, segments_number: u32) {
+        fn calc_point(p1: Point, p2: Point, p3: Point) -> FPPoint {
+            let diff13 = (p1 - p3).to_fppoint();
+            let diff13_norm = diff13.distance();
+
+            if diff13_norm.is_zero() {
+                diff13
+            } else {
+                let diff12_norm = (p1 - p2).to_fppoint().distance();
+                let diff23_norm = (p2 - p3).to_fppoint().distance();
+                let min_distance = min(diff13_norm, min(diff12_norm, diff23_norm));
+
+                diff13 * min_distance / diff13_norm / 3
+            }
+        }
+
+        if self.vertices.len() < 4 {
+            return;
+        }
+
+        let delta = fp!(1 / segments_number);
+        let mut bezierized_vertices = Vec::new();
+        let mut pi = 0;
+        let mut i = 1;
+        let mut ni = 2;
+        let mut right_point = calc_point(self.vertices[pi], self.vertices[i], self.vertices[ni]);
+        let mut left_point;
+
+        pi += 1;
+        while pi != 0 {
+            pi = i;
+            i = ni;
+            ni += 1;
+            if ni >= self.vertices.len() {
+                ni = 0;
+            }
+
+            left_point = right_point;
+            right_point = calc_point(self.vertices[pi], self.vertices[i], self.vertices[ni]);
+
+            bezierized_vertices.extend(BezierCurveSegments::new(
+                Line::new(self.vertices[pi], self.vertices[i]),
+                left_point,
+                -right_point,
+                delta,
+            ));
+        }
+
+        self.vertices = bezierized_vertices;
+    }
+}
+
+struct PolygonPointsIteratorMut<'a> {
+    source: &'a mut Polygon,
+    start: *mut Point,
+    end: *mut Point,
+}
+
+impl<'a> Iterator for PolygonPointsIteratorMut<'a> {
+    type Item = &'a mut Point;
+
+    fn next(&mut self) -> Option<<Self as Iterator>::Item> {
+        if self.start == self.end {
+            None
+        } else {
+            unsafe {
+                let result = &mut *self.start;
+                self.start = self.start.add(1);
+                Some(result)
+            }
+        }
+    }
+}
+
+impl<'a> Drop for PolygonPointsIteratorMut<'a> {
+    fn drop(&mut self) {
+        self.source.force_close();
+    }
+}
+
+impl From<Vec<Point>> for Polygon {
+    fn from(mut v: Vec<Point>) -> Self {
+        if !v.is_empty() && v[0] != v[v.len() - 1] {
+            let start = v[0];
+            v.push(start)
+        }
+        Self { vertices: v }
+    }
+}
+
+#[derive(PartialEq, Eq, Clone, Copy, Debug)]
+pub struct Ray {
+    pub start: Point,
+    pub direction: Point,
+}
+
+impl Ray {
+    #[inline]
+    pub const fn new(start: Point, direction: Point) -> Ray {
+        Self { start, direction }
+    }
+
+    #[inline]
+    pub const fn tangent_mul(&self, x: i32) -> i32 {
+        self.direction.tangent_mul(x)
+    }
+
+    #[inline]
+    pub const fn cotangent_mul(&self, y: i32) -> i32 {
+        self.direction.cotangent_mul(y)
+    }
+
+    #[inline]
+    pub fn orientation(&self, point: Point) -> i32 {
+        (point - self.start).cross(self.direction).signum()
+    }
+}
+
+#[derive(PartialEq, Eq, Clone, Copy, Debug)]
+pub struct Line {
+    pub start: Point,
+    pub end: Point,
+}
+
+impl Line {
+    pub const ZERO: Self = Self::new(Point::ZERO, Point::ZERO);
+
+    #[inline]
+    pub const fn new(start: Point, end: Point) -> Self {
+        Self { start, end }
+    }
+
+    #[inline]
+    pub fn center(&self) -> Point {
+        (self.start + self.end) / 2
+    }
+
+    #[inline]
+    pub fn scaled_direction(&self) -> Point {
+        self.end - self.start
+    }
+
+    #[inline]
+    pub fn scaled_normal(&self) -> Point {
+        self.scaled_direction().rotate90()
+    }
+
+    #[inline]
+    pub fn to_ray(&self) -> Ray {
+        Ray::new(self.start, self.scaled_direction())
+    }
+}
+
+impl IntoIterator for Line {
+    type Item = Point;
+    type IntoIter = LinePoints;
+
+    fn into_iter(self) -> Self::IntoIter {
+        LinePoints::new(self)
+    }
+}
+
+pub struct LinePoints {
+    accumulator: Point,
+    direction: Point,
+    sign: Point,
+    current: Point,
+    total_steps: i32,
+    step: i32,
+}
+
+impl LinePoints {
+    pub fn new(line: Line) -> Self {
+        let dir = line.end - line.start;
+
+        Self {
+            accumulator: Point::ZERO,
+            direction: dir.abs(),
+            sign: dir.signum(),
+            current: line.start,
+            total_steps: dir.max_norm(),
+            step: 0,
+        }
+    }
+}
+
+impl Iterator for LinePoints {
+    type Item = Point;
+
+    fn next(&mut self) -> Option<Self::Item> {
+        if self.step <= self.total_steps {
+            self.accumulator += self.direction;
+
+            if self.accumulator.x > self.total_steps {
+                self.accumulator.x -= self.total_steps;
+                self.current.x += self.sign.x;
+            }
+            if self.accumulator.y > self.total_steps {
+                self.accumulator.y -= self.total_steps;
+                self.current.y += self.sign.y;
+            }
+
+            self.step += 1;
+
+            Some(self.current)
+        } else {
+            None
+        }
+    }
+}
+
+pub struct ArcPoints {
+    point: Point,
+    step: i32,
+}
+
+impl ArcPoints {
+    pub const fn new(radius: i32) -> Self {
+        Self {
+            point: Point::new(0, radius),
+            step: 3 - 2 * radius,
+        }
+    }
+}
+
+impl Iterator for ArcPoints {
+    type Item = Point;
+
+    fn next(&mut self) -> Option<Self::Item> {
+        if self.point.x < self.point.y {
+            let result = self.point;
+
+            if self.step < 0 {
+                self.step += self.point.x * 4 + 6;
+            } else {
+                self.step += (self.point.x - self.point.y) * 4 + 10;
+                self.point.y -= 1;
+            }
+
+            self.point.x += 1;
+
+            Some(result)
+        } else if self.point.x == self.point.y {
+            self.point.x += 1;
+
+            Some(self.point)
+        } else {
+            None
+        }
+    }
+}
+
+pub struct EquidistantPoints {
+    vector: Vec<Point>,
+}
+
+impl EquidistantPoints {
+    pub fn new(vector: Point) -> Self {
+        Self {
+            vector: if vector.x == vector.y {
+                vec![
+                    Point::new(vector.x, vector.x),
+                    Point::new(vector.x, -vector.x),
+                    Point::new(-vector.x, -vector.x),
+                    Point::new(-vector.x, vector.x),
+                ]
+            } else {
+                vec![
+                    Point::new(vector.x, vector.y),
+                    Point::new(vector.x, -vector.y),
+                    Point::new(-vector.x, -vector.y),
+                    Point::new(-vector.x, vector.y),
+                    Point::new(vector.y, vector.x),
+                    Point::new(vector.y, -vector.x),
+                    Point::new(-vector.y, -vector.x),
+                    Point::new(-vector.y, vector.x),
+                ]
+            },
+        }
+    }
+}
+
+impl IntoIterator for EquidistantPoints {
+    type Item = Point;
+    type IntoIter = std::vec::IntoIter<Point>;
+
+    fn into_iter(self) -> Self::IntoIter {
+        self.vector.into_iter()
+    }
+}
+
+pub struct BezierCurveSegments {
+    segment: Line,
+    control_point1: FPPoint,
+    control_point2: FPPoint,
+    offset: FPNum,
+    max_offset: FPNum,
+    delta: FPNum,
+    have_finished: bool,
+}
+
+impl BezierCurveSegments {
+    pub fn new(segment: Line, p1: FPPoint, p2: FPPoint, delta: FPNum) -> Self {
+        Self {
+            segment,
+            control_point1: segment.start.to_fppoint() - p1,
+            control_point2: segment.end.to_fppoint() - p2,
+            offset: fp!(0),
+            max_offset: fp!(4095 / 4096),
+            delta,
+            have_finished: false,
+        }
+    }
+}
+
+impl Iterator for BezierCurveSegments {
+    type Item = Point;
+
+    fn next(&mut self) -> Option<Self::Item> {
+        if self.offset < self.max_offset {
+            let offset_sq = self.offset * self.offset;
+            let offset_cub = offset_sq * self.offset;
+
+            let r1 = fp!(1) - self.offset * 3 + offset_sq * 3 - offset_cub;
+            let r2 = self.offset * 3 - offset_sq * 6 + offset_cub * 3;
+            let r3 = offset_sq * 3 - offset_cub * 3;
+
+            let p = r1 * self.segment.start
+                + r2 * self.control_point1
+                + r3 * self.control_point2
+                + offset_cub * self.segment.end;
+
+            self.offset += self.delta;
+
+            Some(Point::from_fppoint(&p))
+        } else if !self.have_finished {
+            self.have_finished = true;
+
+            Some(self.segment.end)
+        } else {
+            None
+        }
+    }
+}
+
+#[cfg(test)]
+mod tests {
+    use super::*;
+
+    fn get_points(coords: &[(i32, i32)]) -> Vec<Point> {
+        coords.iter().map(|(x, y)| Point::new(*x, *y)).collect()
+    }
+
+    #[test]
+    fn line_basic() {
+        let line: Vec<Point> = Line::new(Point::new(0, 0), Point::new(3, 3))
+            .into_iter()
+            .collect();
+        let v = get_points(&[(0, 0), (1, 1), (2, 2), (3, 3)]);
+
+        assert_eq!(line, v);
+    }
+
+    #[test]
+    fn line_skewed() {
+        let line: Vec<Point> = Line::new(Point::new(0, 0), Point::new(5, -7))
+            .into_iter()
+            .collect();
+        let v = get_points(&[
+            (0, 0),
+            (1, -1),
+            (2, -2),
+            (2, -3),
+            (3, -4),
+            (4, -5),
+            (4, -6),
+            (5, -7),
+        ]);
+
+        assert_eq!(line, v);
+    }
+
+    #[test]
+    fn equidistant_full() {
+        let n: Vec<Point> = EquidistantPoints::new(Point::new(1, 3))
+            .into_iter()
+            .collect();
+        let v = get_points(&[
+            (1, 3),
+            (1, -3),
+            (-1, -3),
+            (-1, 3),
+            (3, 1),
+            (3, -1),
+            (-3, -1),
+            (-3, 1),
+        ]);
+
+        assert_eq!(n, v);
+    }
+
+    #[test]
+    fn equidistant_half() {
+        let n: Vec<Point> = EquidistantPoints::new(Point::new(2, 2))
+            .into_iter()
+            .collect();
+        let v = get_points(&[(2, 2), (2, -2), (-2, -2), (-2, 2)]);
+
+        assert_eq!(n, v);
+    }
+
+    #[test]
+    fn line() {
+        let l = Line::new(Point::new(1, 1), Point::new(5, 6));
+
+        assert_eq!(l.center(), Point::new(3, 3));
+    }
+
+    #[test]
+    fn rect() {
+        let r = Rect::from_box(10, 100, 0, 70);
+
+        assert!(r.contains_inside(Point::new(99, 69)));
+        assert!(!r.contains_inside(Point::new(100, 70)));
+
+        assert_eq!(r.top_left(), Point::new(10, 0));
+        assert_eq!(r.with_margin(12), Rect::from_box(22, 88, 12, 58));
+    }
+
+    #[test]
+    fn fit() {
+        let r = Rect::from_box(10, 100, 0, 70);
+
+        assert_eq!(Point::new(0, -10).clamp(&r), Point::new(10, 0));
+        assert_eq!(Point::new(1000, 1000).clamp(&r), Point::new(100, 70));
+    }
+}