gameServer/OfficialServer/Glicko2.hs
branchhedgeroid
changeset 15515 7030706266df
parent 11395 36e1bbb6ecea
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/gameServer/OfficialServer/Glicko2.hs	Fri Dec 06 22:20:53 2019 +0100
@@ -0,0 +1,70 @@
+{-
+    Glicko2, as described in http://www.glicko.net/glicko/glicko2.pdf
+-}
+
+module OfficialServer.Glicko2 where
+
+data RatingData = RatingData {
+        ratingValue
+        , rD
+        , volatility :: Double
+    }
+data GameData = GameData {
+        opponentRating :: RatingData,
+        gameScore :: Double
+    }
+
+τ, ε :: Double
+τ = 0.2
+ε = 0.000001
+
+g_φ :: Double -> Double
+g_φ φ = 1 / sqrt (1 + 3 * φ^2 / pi^2)
+
+calcE :: RatingData -> GameData -> (Double, Double, Double)
+calcE oldRating (GameData oppRating s) = (
+    1 / (1 + exp (g_φᵢ * (μᵢ - μ)))
+    , g_φᵢ
+    , s
+    )
+    where
+        μ = (ratingValue oldRating - 1500) / 173.7178
+        φ = rD oldRating / 173.7178
+        μᵢ = (ratingValue oppRating - 1500) / 173.7178
+        φᵢ = rD oppRating / 173.7178
+        g_φᵢ = g_φ φᵢ
+
+
+calcNewRating :: RatingData -> [GameData] -> (Int, RatingData)
+calcNewRating oldRating [] = (0, RatingData (ratingValue oldRating) (173.7178 * sqrt (φ ^ 2 + σ ^ 2)) σ)
+    where
+        φ = rD oldRating / 173.7178
+        σ = volatility oldRating
+
+calcNewRating oldRating games = (length games, RatingData (173.7178 * μ' + 1500) (173.7178 * sqrt φ'sqr) σ')
+    where
+        _Es = map (calcE oldRating) games
+        υ = 1 / sum (map υ_p _Es)
+        υ_p (_Eᵢ, g_φᵢ, _) = g_φᵢ ^ 2 * _Eᵢ * (1 - _Eᵢ)
+        _Δ = υ * part1
+        part1 = sum (map _Δ_p _Es)
+        _Δ_p (_Eᵢ, g_φᵢ, sᵢ) = g_φᵢ * (sᵢ - _Eᵢ)
+
+        μ = (ratingValue oldRating - 1500) / 173.7178
+        φ = rD oldRating / 173.7178
+        σ = volatility oldRating
+
+        a = log (σ ^ 2)
+        f :: Double -> Double
+        f x = exp x * (_Δ ^ 2 - φ ^ 2 - υ - exp x) / 2 / (φ ^ 2 + υ + exp x) ^ 2 - (x - a) / τ ^ 2
+
+        _A = a
+        _B = if _Δ ^ 2 > φ ^ 2 + υ then log (_Δ ^ 2 - φ ^ 2 - υ) else head . dropWhile ((>) 0 . f) . map (\k -> a - k * τ) $ [1 ..]
+        fA = f _A
+        fB = f _B
+        σ' = (\(_A, _, _, _) -> exp (_A / 2)) . head . dropWhile (\(_A, _, _B, _) -> abs (_B - _A) > ε) $ iterate step5 (_A, fA, _B, fB)
+        step5 (_A, fA, _B, fB) = let _C = _A + (_A - _B) * fA / (fB - fA); fC = f _C in
+                                     if fC * fB < 0 then (_B, fB, _C, fC) else (_A, fA / 2, _C, fC)
+
+        φ'sqr = 1 / (1 / (φ ^ 2 + σ' ^ 2) + 1 / υ)
+        μ' = μ + φ'sqr * part1