2812
+ − 1
/*
+ − 2
** $Id: lopcodes.h,v 1.125.1.1 2007/12/27 13:02:25 roberto Exp $
+ − 3
** Opcodes for Lua virtual machine
+ − 4
** See Copyright Notice in lua.h
+ − 5
*/
+ − 6
+ − 7
#ifndef lopcodes_h
+ − 8
#define lopcodes_h
+ − 9
+ − 10
#include "llimits.h"
+ − 11
+ − 12
+ − 13
/*===========================================================================
+ − 14
We assume that instructions are unsigned numbers.
+ − 15
All instructions have an opcode in the first 6 bits.
+ − 16
Instructions can have the following fields:
+ − 17
`A' : 8 bits
+ − 18
`B' : 9 bits
+ − 19
`C' : 9 bits
+ − 20
`Bx' : 18 bits (`B' and `C' together)
+ − 21
`sBx' : signed Bx
+ − 22
+ − 23
A signed argument is represented in excess K; that is, the number
+ − 24
value is the unsigned value minus K. K is exactly the maximum value
+ − 25
for that argument (so that -max is represented by 0, and +max is
+ − 26
represented by 2*max), which is half the maximum for the corresponding
+ − 27
unsigned argument.
+ − 28
===========================================================================*/
+ − 29
+ − 30
+ − 31
enum OpMode {iABC, iABx, iAsBx}; /* basic instruction format */
+ − 32
+ − 33
+ − 34
/*
+ − 35
** size and position of opcode arguments.
+ − 36
*/
+ − 37
#define SIZE_C 9
+ − 38
#define SIZE_B 9
+ − 39
#define SIZE_Bx (SIZE_C + SIZE_B)
+ − 40
#define SIZE_A 8
+ − 41
+ − 42
#define SIZE_OP 6
+ − 43
+ − 44
#define POS_OP 0
+ − 45
#define POS_A (POS_OP + SIZE_OP)
+ − 46
#define POS_C (POS_A + SIZE_A)
+ − 47
#define POS_B (POS_C + SIZE_C)
+ − 48
#define POS_Bx POS_C
+ − 49
+ − 50
+ − 51
/*
+ − 52
** limits for opcode arguments.
+ − 53
** we use (signed) int to manipulate most arguments,
+ − 54
** so they must fit in LUAI_BITSINT-1 bits (-1 for sign)
+ − 55
*/
+ − 56
#if SIZE_Bx < LUAI_BITSINT-1
+ − 57
#define MAXARG_Bx ((1<<SIZE_Bx)-1)
+ − 58
#define MAXARG_sBx (MAXARG_Bx>>1) /* `sBx' is signed */
+ − 59
#else
+ − 60
#define MAXARG_Bx MAX_INT
+ − 61
#define MAXARG_sBx MAX_INT
+ − 62
#endif
+ − 63
+ − 64
+ − 65
#define MAXARG_A ((1<<SIZE_A)-1)
+ − 66
#define MAXARG_B ((1<<SIZE_B)-1)
+ − 67
#define MAXARG_C ((1<<SIZE_C)-1)
+ − 68
+ − 69
+ − 70
/* creates a mask with `n' 1 bits at position `p' */
+ − 71
#define MASK1(n,p) ((~((~(Instruction)0)<<n))<<p)
+ − 72
+ − 73
/* creates a mask with `n' 0 bits at position `p' */
+ − 74
#define MASK0(n,p) (~MASK1(n,p))
+ − 75
+ − 76
/*
+ − 77
** the following macros help to manipulate instructions
+ − 78
*/
+ − 79
+ − 80
#define GET_OPCODE(i) (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0)))
+ − 81
#define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \
+ − 82
((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP))))
+ − 83
+ − 84
#define GETARG_A(i) (cast(int, ((i)>>POS_A) & MASK1(SIZE_A,0)))
+ − 85
#define SETARG_A(i,u) ((i) = (((i)&MASK0(SIZE_A,POS_A)) | \
+ − 86
((cast(Instruction, u)<<POS_A)&MASK1(SIZE_A,POS_A))))
+ − 87
+ − 88
#define GETARG_B(i) (cast(int, ((i)>>POS_B) & MASK1(SIZE_B,0)))
+ − 89
#define SETARG_B(i,b) ((i) = (((i)&MASK0(SIZE_B,POS_B)) | \
+ − 90
((cast(Instruction, b)<<POS_B)&MASK1(SIZE_B,POS_B))))
+ − 91
+ − 92
#define GETARG_C(i) (cast(int, ((i)>>POS_C) & MASK1(SIZE_C,0)))
+ − 93
#define SETARG_C(i,b) ((i) = (((i)&MASK0(SIZE_C,POS_C)) | \
+ − 94
((cast(Instruction, b)<<POS_C)&MASK1(SIZE_C,POS_C))))
+ − 95
+ − 96
#define GETARG_Bx(i) (cast(int, ((i)>>POS_Bx) & MASK1(SIZE_Bx,0)))
+ − 97
#define SETARG_Bx(i,b) ((i) = (((i)&MASK0(SIZE_Bx,POS_Bx)) | \
+ − 98
((cast(Instruction, b)<<POS_Bx)&MASK1(SIZE_Bx,POS_Bx))))
+ − 99
+ − 100
#define GETARG_sBx(i) (GETARG_Bx(i)-MAXARG_sBx)
+ − 101
#define SETARG_sBx(i,b) SETARG_Bx((i),cast(unsigned int, (b)+MAXARG_sBx))
+ − 102
+ − 103
+ − 104
#define CREATE_ABC(o,a,b,c) ((cast(Instruction, o)<<POS_OP) \
+ − 105
| (cast(Instruction, a)<<POS_A) \
+ − 106
| (cast(Instruction, b)<<POS_B) \
+ − 107
| (cast(Instruction, c)<<POS_C))
+ − 108
+ − 109
#define CREATE_ABx(o,a,bc) ((cast(Instruction, o)<<POS_OP) \
+ − 110
| (cast(Instruction, a)<<POS_A) \
+ − 111
| (cast(Instruction, bc)<<POS_Bx))
+ − 112
+ − 113
+ − 114
/*
+ − 115
** Macros to operate RK indices
+ − 116
*/
+ − 117
+ − 118
/* this bit 1 means constant (0 means register) */
+ − 119
#define BITRK (1 << (SIZE_B - 1))
+ − 120
+ − 121
/* test whether value is a constant */
+ − 122
#define ISK(x) ((x) & BITRK)
+ − 123
+ − 124
/* gets the index of the constant */
+ − 125
#define INDEXK(r) ((int)(r) & ~BITRK)
+ − 126
+ − 127
#define MAXINDEXRK (BITRK - 1)
+ − 128
+ − 129
/* code a constant index as a RK value */
+ − 130
#define RKASK(x) ((x) | BITRK)
+ − 131
+ − 132
+ − 133
/*
+ − 134
** invalid register that fits in 8 bits
+ − 135
*/
+ − 136
#define NO_REG MAXARG_A
+ − 137
+ − 138
+ − 139
/*
+ − 140
** R(x) - register
+ − 141
** Kst(x) - constant (in constant table)
+ − 142
** RK(x) == if ISK(x) then Kst(INDEXK(x)) else R(x)
+ − 143
*/
+ − 144
+ − 145
+ − 146
/*
+ − 147
** grep "ORDER OP" if you change these enums
+ − 148
*/
+ − 149
+ − 150
typedef enum {
+ − 151
/*----------------------------------------------------------------------
+ − 152
name args description
+ − 153
------------------------------------------------------------------------*/
+ − 154
OP_MOVE,/* A B R(A) := R(B) */
+ − 155
OP_LOADK,/* A Bx R(A) := Kst(Bx) */
+ − 156
OP_LOADBOOL,/* A B C R(A) := (Bool)B; if (C) pc++ */
+ − 157
OP_LOADNIL,/* A B R(A) := ... := R(B) := nil */
+ − 158
OP_GETUPVAL,/* A B R(A) := UpValue[B] */
+ − 159
+ − 160
OP_GETGLOBAL,/* A Bx R(A) := Gbl[Kst(Bx)] */
+ − 161
OP_GETTABLE,/* A B C R(A) := R(B)[RK(C)] */
+ − 162
+ − 163
OP_SETGLOBAL,/* A Bx Gbl[Kst(Bx)] := R(A) */
+ − 164
OP_SETUPVAL,/* A B UpValue[B] := R(A) */
+ − 165
OP_SETTABLE,/* A B C R(A)[RK(B)] := RK(C) */
+ − 166
+ − 167
OP_NEWTABLE,/* A B C R(A) := {} (size = B,C) */
+ − 168
+ − 169
OP_SELF,/* A B C R(A+1) := R(B); R(A) := R(B)[RK(C)] */
+ − 170
+ − 171
OP_ADD,/* A B C R(A) := RK(B) + RK(C) */
+ − 172
OP_SUB,/* A B C R(A) := RK(B) - RK(C) */
+ − 173
OP_MUL,/* A B C R(A) := RK(B) * RK(C) */
+ − 174
OP_DIV,/* A B C R(A) := RK(B) / RK(C) */
+ − 175
OP_MOD,/* A B C R(A) := RK(B) % RK(C) */
+ − 176
OP_POW,/* A B C R(A) := RK(B) ^ RK(C) */
+ − 177
OP_UNM,/* A B R(A) := -R(B) */
+ − 178
OP_NOT,/* A B R(A) := not R(B) */
+ − 179
OP_LEN,/* A B R(A) := length of R(B) */
+ − 180
+ − 181
OP_CONCAT,/* A B C R(A) := R(B).. ... ..R(C) */
+ − 182
+ − 183
OP_JMP,/* sBx pc+=sBx */
+ − 184
+ − 185
OP_EQ,/* A B C if ((RK(B) == RK(C)) ~= A) then pc++ */
+ − 186
OP_LT,/* A B C if ((RK(B) < RK(C)) ~= A) then pc++ */
+ − 187
OP_LE,/* A B C if ((RK(B) <= RK(C)) ~= A) then pc++ */
+ − 188
3697
+ − 189
OP_TEST,/* A C if not (R(A) <=> C) then pc++ */
+ − 190
OP_TESTSET,/* A B C if (R(B) <=> C) then R(A) := R(B) else pc++ */
2812
+ − 191
+ − 192
OP_CALL,/* A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */
+ − 193
OP_TAILCALL,/* A B C return R(A)(R(A+1), ... ,R(A+B-1)) */
+ − 194
OP_RETURN,/* A B return R(A), ... ,R(A+B-2) (see note) */
+ − 195
+ − 196
OP_FORLOOP,/* A sBx R(A)+=R(A+2);
+ − 197
if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/
+ − 198
OP_FORPREP,/* A sBx R(A)-=R(A+2); pc+=sBx */
+ − 199
3697
+ − 200
OP_TFORLOOP,/* A C R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2));
+ − 201
if R(A+3) ~= nil then R(A+2)=R(A+3) else pc++ */
2812
+ − 202
OP_SETLIST,/* A B C R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B */
+ − 203
+ − 204
OP_CLOSE,/* A close all variables in the stack up to (>=) R(A)*/
+ − 205
OP_CLOSURE,/* A Bx R(A) := closure(KPROTO[Bx], R(A), ... ,R(A+n)) */
+ − 206
+ − 207
OP_VARARG/* A B R(A), R(A+1), ..., R(A+B-1) = vararg */
+ − 208
} OpCode;
+ − 209
+ − 210
+ − 211
#define NUM_OPCODES (cast(int, OP_VARARG) + 1)
+ − 212
+ − 213
+ − 214
+ − 215
/*===========================================================================
+ − 216
Notes:
+ − 217
(*) In OP_CALL, if (B == 0) then B = top. C is the number of returns - 1,
+ − 218
and can be 0: OP_CALL then sets `top' to last_result+1, so
+ − 219
next open instruction (OP_CALL, OP_RETURN, OP_SETLIST) may use `top'.
+ − 220
+ − 221
(*) In OP_VARARG, if (B == 0) then use actual number of varargs and
+ − 222
set top (like in OP_CALL with C == 0).
+ − 223
+ − 224
(*) In OP_RETURN, if (B == 0) then return up to `top'
+ − 225
+ − 226
(*) In OP_SETLIST, if (B == 0) then B = `top';
+ − 227
if (C == 0) then next `instruction' is real C
+ − 228
+ − 229
(*) For comparisons, A specifies what condition the test should accept
+ − 230
(true or false).
+ − 231
+ − 232
(*) All `skips' (pc++) assume that next instruction is a jump
+ − 233
===========================================================================*/
+ − 234
+ − 235
+ − 236
/*
+ − 237
** masks for instruction properties. The format is:
+ − 238
** bits 0-1: op mode
+ − 239
** bits 2-3: C arg mode
+ − 240
** bits 4-5: B arg mode
+ − 241
** bit 6: instruction set register A
+ − 242
** bit 7: operator is a test
3697
+ − 243
*/
2812
+ − 244
+ − 245
enum OpArgMask {
+ − 246
OpArgN, /* argument is not used */
+ − 247
OpArgU, /* argument is used */
+ − 248
OpArgR, /* argument is a register or a jump offset */
+ − 249
OpArgK /* argument is a constant or register/constant */
+ − 250
};
+ − 251
+ − 252
LUAI_DATA const lu_byte luaP_opmodes[NUM_OPCODES];
+ − 253
+ − 254
#define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 3))
+ − 255
#define getBMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 4) & 3))
+ − 256
#define getCMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 2) & 3))
+ − 257
#define testAMode(m) (luaP_opmodes[m] & (1 << 6))
+ − 258
#define testTMode(m) (luaP_opmodes[m] & (1 << 7))
+ − 259
+ − 260
+ − 261
LUAI_DATA const char *const luaP_opnames[NUM_OPCODES+1]; /* opcode names */
+ − 262
+ − 263
+ − 264
/* number of list items to accumulate before a SETLIST instruction */
+ − 265
#define LFIELDS_PER_FLUSH 50
+ − 266
+ − 267
+ − 268
#endif