tools/ubot-plugins/ubot-mingpt-plugin/src/main.rs
author unC0Rr
Fri, 03 Feb 2023 14:44:33 +0100
branchtransitional_engine
changeset 15916 e82de0410da5
parent 15793 96443d9b48c9
permissions -rw-r--r--
Rework how rules are defined, add transformations for tiles

/* This example uses the tinyshakespeare dataset which can be downloaded at:
   https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt

   This is mostly a rust port of https://github.com/karpathy/minGPT
*/

extern crate tch;
use anyhow::{bail, Result as AHResult};
use std::{io, io::Write};
use tch::data::TextData;
use tch::nn::{ModuleT, OptimizerConfig};
use tch::{nn, Device, IndexOp, Kind, Tensor};

use futures::prelude::*;
use lapin::{options::*, types::FieldTable, BasicProperties, Connection, ConnectionProperties};

use tokio_amqp::*;

const LEARNING_RATE: f64 = 0.0003;
const BLOCK_SIZE: i64 = 128;
const BATCH_SIZE: i64 = 64;
const EPOCHS: i64 = 100;
const SAMPLING_LEN: i64 = 512;

#[derive(Debug, Copy, Clone)]
struct Config {
    vocab_size: i64,
    n_embd: i64,
    n_head: i64,
    n_layer: i64,
    block_size: i64,
    attn_pdrop: f64,
    resid_pdrop: f64,
    embd_pdrop: f64,
}

// Weight decay only applies to the weight matrixes in the linear layers
const NO_WEIGHT_DECAY_GROUP: usize = 0;
const WEIGHT_DECAY_GROUP: usize = 1;

// Custom linear layer so that different groups can be used for weight
// and biases.
#[derive(Debug)]
struct Linear {
    pub ws: Tensor,
    pub bs: Tensor,
}

impl nn::Module for Linear {
    fn forward(&self, xs: &Tensor) -> Tensor {
        xs.matmul(&self.ws.tr()) + &self.bs
    }
}

fn linear(vs: nn::Path, in_dim: i64, out_dim: i64) -> Linear {
    let wd = vs.set_group(WEIGHT_DECAY_GROUP);
    let no_wd = vs.set_group(NO_WEIGHT_DECAY_GROUP);
    Linear {
        ws: wd.randn("weight", &[out_dim, in_dim], 0.0, 0.02),
        bs: no_wd.zeros("bias", &[out_dim]),
    }
}

fn linear_no_bias(vs: nn::Path, in_dim: i64, out_dim: i64) -> Linear {
    let wd = vs.set_group(WEIGHT_DECAY_GROUP);
    let no_wd = vs.set_group(NO_WEIGHT_DECAY_GROUP);
    Linear {
        ws: wd.randn("weight", &[out_dim, in_dim], 0.0, 0.02),
        bs: no_wd.zeros_no_train("bias", &[out_dim]),
    }
}

fn causal_self_attention(p: &nn::Path, cfg: Config) -> impl ModuleT {
    let key = linear(p / "key", cfg.n_embd, cfg.n_embd);
    let query = linear(p / "query", cfg.n_embd, cfg.n_embd);
    let value = linear(p / "value", cfg.n_embd, cfg.n_embd);
    let proj = linear(p / "proj", cfg.n_embd, cfg.n_embd);
    let mask_init =
        Tensor::ones(&[cfg.block_size, cfg.block_size], (Kind::Float, p.device())).tril(0);
    let mask_init = mask_init.view([1, 1, cfg.block_size, cfg.block_size]);
    // let mask = p.var_copy("mask", &mask_init);
    let mask = mask_init;
    nn::func_t(move |xs, train| {
        let (sz_b, sz_t, sz_c) = xs.size3().unwrap();
        let sizes = [sz_b, sz_t, cfg.n_head, sz_c / cfg.n_head];
        let k = xs.apply(&key).view(sizes).transpose(1, 2);
        let q = xs.apply(&query).view(sizes).transpose(1, 2);
        let v = xs.apply(&value).view(sizes).transpose(1, 2);
        let att = q.matmul(&k.transpose(-2, -1)) * (1.0 / f64::sqrt(sizes[3] as f64));
        let att = att.masked_fill(
            &mask.i((.., .., ..sz_t, ..sz_t)).eq(0.),
            std::f64::NEG_INFINITY,
        );
        let att = att.softmax(-1, Kind::Float).dropout(cfg.attn_pdrop, train);
        let ys = att
            .matmul(&v)
            .transpose(1, 2)
            .contiguous()
            .view([sz_b, sz_t, sz_c]);
        ys.apply(&proj).dropout(cfg.resid_pdrop, train)
    })
}

fn block(p: &nn::Path, cfg: Config) -> impl ModuleT {
    let ln1 = nn::layer_norm(p / "ln1", vec![cfg.n_embd], Default::default());
    let ln2 = nn::layer_norm(p / "ln2", vec![cfg.n_embd], Default::default());
    let attn = causal_self_attention(p, cfg);
    let lin1 = linear(p / "lin1", cfg.n_embd, 4 * cfg.n_embd);
    let lin2 = linear(p / "lin2", 4 * cfg.n_embd, cfg.n_embd);
    nn::func_t(move |xs, train| {
        let xs = xs + xs.apply(&ln1).apply_t(&attn, train);
        let ys = xs
            .apply(&ln2)
            .apply(&lin1)
            .gelu()
            .apply(&lin2)
            .dropout(cfg.resid_pdrop, train);
        xs + ys
    })
}

fn gpt(p: &nn::Path, cfg: Config) -> impl ModuleT {
    let p = &p.set_group(NO_WEIGHT_DECAY_GROUP);
    let tok_emb = nn::embedding(
        p / "tok_emb",
        cfg.vocab_size,
        cfg.n_embd,
        Default::default(),
    );
    let pos_emb = p.zeros("pos_emb", &[1, cfg.block_size, cfg.n_embd]);
    let ln_f = nn::layer_norm(p / "ln_f", vec![cfg.n_embd], Default::default());
    let head = linear_no_bias(p / "head", cfg.n_embd, cfg.vocab_size);
    let mut blocks = nn::seq_t();
    for block_idx in 0..cfg.n_layer {
        blocks = blocks.add(block(&(p / block_idx), cfg));
    }
    nn::func_t(move |xs, train| {
        let (_sz_b, sz_t) = xs.size2().unwrap();
        let tok_emb = xs.apply(&tok_emb);
        let pos_emb = pos_emb.i((.., ..sz_t, ..));
        (tok_emb + pos_emb)
            .dropout(cfg.embd_pdrop, train)
            .apply_t(&blocks, train)
            .apply(&ln_f)
            .apply(&head)
    })
}

/// Generates some sample string using the GPT model.
fn sample(data: &TextData, gpt: &impl ModuleT, input: Tensor) -> String {
    let mut input = input;
    let mut result = String::new();
    for _index in 0..SAMPLING_LEN {
        let logits = input.apply_t(gpt, false).i((0, -1, ..));
        let sampled_y = logits.softmax(-1, Kind::Float).multinomial(1, true);
        let last_label = i64::from(&sampled_y);
        result.push(data.label_to_char(last_label));
        input = Tensor::cat(&[input, sampled_y.view([1, 1])], 1).narrow(1, 1, BLOCK_SIZE);
    }
    result
}

#[tokio::main]
async fn main() -> AHResult<()> {
    let device = Device::cuda_if_available();
    let mut vs = nn::VarStore::new(device);
    let data = TextData::new("10.log")?;
    let labels = data.labels();
    println!("Dataset loaded, {} labels.", labels);
    let cfg = Config {
        vocab_size: labels,
        n_embd: 384, // was 512
        n_head: 8,
        n_layer: 8,
        block_size: BLOCK_SIZE,
        attn_pdrop: 0.1,
        resid_pdrop: 0.1,
        embd_pdrop: 0.1,
    };
    let gpt = gpt(&(&vs.root() / "gpt"), cfg);
    let args: Vec<_> = std::env::args().collect();
    if args.len() < 2 {
        bail!("usage: main (train|predict weights.ot seqstart)")
    }
    match args[1].as_str() {
        "train" => {
            let mut opt = nn::AdamW::default().build(&vs, LEARNING_RATE)?;
            opt.set_weight_decay_group(NO_WEIGHT_DECAY_GROUP, 0.0);
            opt.set_weight_decay_group(WEIGHT_DECAY_GROUP, 0.1);
            let mut idx = 0;
            vs.load("384.ot")?;
            for epoch in 1..(1 + EPOCHS) {
                let mut sum_loss = 0.;
                let mut cnt_loss = 0.;
                for batch in data.iter_shuffle(BLOCK_SIZE + 1, BATCH_SIZE) {
                    let xs = batch
                        .narrow(1, 0, BLOCK_SIZE)
                        .to_kind(Kind::Int64)
                        .to_device(device);
                    let ys = batch
                        .narrow(1, 1, BLOCK_SIZE)
                        .to_kind(Kind::Int64)
                        .to_device(device);
                    let logits = xs.apply_t(&gpt, true);
                    let loss = logits
                        .view([BATCH_SIZE * BLOCK_SIZE, labels])
                        .cross_entropy_for_logits(&ys.view([BATCH_SIZE * BLOCK_SIZE]));
                    opt.backward_step_clip(&loss, 0.5);
                    sum_loss += f64::from(loss);
                    cnt_loss += 1.0;
                    idx += 1;
                    if idx % 10 == 0 {
                        print!("{}", '.');
                        io::stdout().flush()?;
                    }
                    if idx % 1000 == 0 {
                        println!("Epoch: {}   loss: {:5.3}", epoch, sum_loss / cnt_loss);
                        let input = Tensor::zeros(&[1, BLOCK_SIZE], (Kind::Int64, device));
                        println!("Sample: {}", sample(&data, &gpt, input));
                        if let Err(err) = vs.save(format!("gpt{:08}.ot", idx)) {
                            println!("error while saving {}", err);
                        }
                        sum_loss = 0.;
                        cnt_loss = 0.;
                    }
                }
            }
        }
        "predict" => {
            let amqp_url = std::env::var("AMQP_URL").expect("expected AMQP_URL env variabe");
            let conn = Connection::connect(&amqp_url, ConnectionProperties::default().with_tokio())
                .await?;

            let pub_channel = conn.create_channel().await?;
            let sub_channel = conn.create_channel().await?;

            let queue = sub_channel
                .queue_declare(
                    &"",
                    QueueDeclareOptions {
                        exclusive: true,
                        auto_delete: true,
                        ..QueueDeclareOptions::default()
                    },
                    FieldTable::default(),
                )
                .await?;

            sub_channel
                .queue_bind(
                    queue.name().as_str(),
                    "irc",
                    "cmd.say.hedgewars",
                    QueueBindOptions::default(),
                    FieldTable::default(),
                )
                .await?;

            sub_channel
                .queue_bind(
                    queue.name().as_str(),
                    "irc",
                    "msg.hedgewars",
                    QueueBindOptions::default(),
                    FieldTable::default(),
                )
                .await?;

            let mut subscriber = sub_channel
                .basic_consume(
                    queue.name().as_str(),
                    &"",
                    BasicConsumeOptions::default(),
                    FieldTable::default(),
                )
                .await?;

            vs.load(args[2].as_str())?;

            let mut buffer = Vec::new();

            while let Some(amqp_message) = subscriber.next().await {
                let (_, delivery) = amqp_message.expect("error in consumer");
                delivery.ack(BasicAckOptions::default()).await?;

                if delivery.routing_key.as_str() == "msg.hedgewars" {
                    let chat_message = String::from_utf8_lossy(&delivery.data);
                    if let Some((_who, message)) = chat_message.split_once('\n') {
                        buffer.push('\n');
                        buffer.extend(message.chars());
                        if buffer.len() >= BLOCK_SIZE as usize {
                            let _ = buffer.drain(0..=buffer.len() - BLOCK_SIZE as usize);
                        }
                    }
                } else {
                    let chat_message = String::from_utf8_lossy(&delivery.data);
                    let seed = chat_message.split_once('\n').map(|(_, s)| s).unwrap_or("");
                    buffer.push('\n');
                    buffer.extend(seed.chars());

                    if buffer.len() >= BLOCK_SIZE as usize {
                        let _ = buffer.drain(0..=buffer.len() - BLOCK_SIZE as usize);
                    }

                    let input = Tensor::zeros(&[1, BLOCK_SIZE], (Kind::Int64, device));
                    for (idx, c) in buffer.iter().rev().enumerate() {
                        let _filled = input
                            .i((0, BLOCK_SIZE - 1 - idx as i64))
                            .fill_(data.char_to_label(*c).unwrap_or(0) as i64);
                    }

                    let proceeded_message = &sample(&data, &gpt, input);
                    let final_message = proceeded_message
                        .split_once('\n')
                        .map(|(m, _)| m)
                        .unwrap_or(proceeded_message);
                    let final_message = &format!("{}{}", seed, final_message);

                    println!("{} --> {}", seed, proceeded_message);

                    pub_channel
                        .basic_publish(
                            "irc",
                            "say.hedgewars",
                            BasicPublishOptions::default(),
                            final_message.as_bytes().to_vec(),
                            BasicProperties::default(),
                        )
                        .await?;
                }
            }
        }
        _ => bail!("usage: main (train|predict weights.ot)"),
    };

    Ok(())
}