misc/liblua/lopcodes.h
author Wuzzy <Wuzzy2@mail.ru>
Mon, 13 Nov 2017 22:14:45 +0100
changeset 12836 8610462e3d33
parent 10017 de822cd3df3a
permissions -rw-r--r--
Remove 2 unused number tags in Construction Mode GUI These numbers are shown aside the power tag, but the numbers never change. They don't serve any purpose and are just visual clutter and annoying, since they partially overlap. They are probably a leftover from copying code over from other scripts. With this changeset, only the power and turn time are left visible, as it is supposed to.

/*
** $Id: lopcodes.h,v 1.125.1.1 2007/12/27 13:02:25 roberto Exp $
** Opcodes for Lua virtual machine
** See Copyright Notice in lua.h
*/

#ifndef lopcodes_h
#define lopcodes_h

#include "llimits.h"


/*===========================================================================
  We assume that instructions are unsigned numbers.
  All instructions have an opcode in the first 6 bits.
  Instructions can have the following fields:
    `A' : 8 bits
    `B' : 9 bits
    `C' : 9 bits
    `Bx' : 18 bits (`B' and `C' together)
    `sBx' : signed Bx

  A signed argument is represented in excess K; that is, the number
  value is the unsigned value minus K. K is exactly the maximum value
  for that argument (so that -max is represented by 0, and +max is
  represented by 2*max), which is half the maximum for the corresponding
  unsigned argument.
===========================================================================*/


enum OpMode {iABC, iABx, iAsBx};  /* basic instruction format */


/*
** size and position of opcode arguments.
*/
#define SIZE_C      9
#define SIZE_B      9
#define SIZE_Bx     (SIZE_C + SIZE_B)
#define SIZE_A      8

#define SIZE_OP     6

#define POS_OP      0
#define POS_A       (POS_OP + SIZE_OP)
#define POS_C       (POS_A + SIZE_A)
#define POS_B       (POS_C + SIZE_C)
#define POS_Bx      POS_C


/*
** limits for opcode arguments.
** we use (signed) int to manipulate most arguments,
** so they must fit in LUAI_BITSINT-1 bits (-1 for sign)
*/
#if SIZE_Bx < LUAI_BITSINT-1
#define MAXARG_Bx        ((1<<SIZE_Bx)-1)
#define MAXARG_sBx        (MAXARG_Bx>>1)         /* `sBx' is signed */
#else
#define MAXARG_Bx        MAX_INT
#define MAXARG_sBx        MAX_INT
#endif


#define MAXARG_A        ((1<<SIZE_A)-1)
#define MAXARG_B        ((1<<SIZE_B)-1)
#define MAXARG_C        ((1<<SIZE_C)-1)


/* creates a mask with `n' 1 bits at position `p' */
#define MASK1(n,p)  ((~((~(Instruction)0)<<n))<<p)

/* creates a mask with `n' 0 bits at position `p' */
#define MASK0(n,p)  (~MASK1(n,p))

/*
** the following macros help to manipulate instructions
*/

#define GET_OPCODE(i)   (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0)))
#define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \
        ((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP))))

#define GETARG_A(i) (cast(int, ((i)>>POS_A) & MASK1(SIZE_A,0)))
#define SETARG_A(i,u)   ((i) = (((i)&MASK0(SIZE_A,POS_A)) | \
        ((cast(Instruction, u)<<POS_A)&MASK1(SIZE_A,POS_A))))

#define GETARG_B(i) (cast(int, ((i)>>POS_B) & MASK1(SIZE_B,0)))
#define SETARG_B(i,b)   ((i) = (((i)&MASK0(SIZE_B,POS_B)) | \
        ((cast(Instruction, b)<<POS_B)&MASK1(SIZE_B,POS_B))))

#define GETARG_C(i) (cast(int, ((i)>>POS_C) & MASK1(SIZE_C,0)))
#define SETARG_C(i,b)   ((i) = (((i)&MASK0(SIZE_C,POS_C)) | \
        ((cast(Instruction, b)<<POS_C)&MASK1(SIZE_C,POS_C))))

#define GETARG_Bx(i)    (cast(int, ((i)>>POS_Bx) & MASK1(SIZE_Bx,0)))
#define SETARG_Bx(i,b)  ((i) = (((i)&MASK0(SIZE_Bx,POS_Bx)) | \
        ((cast(Instruction, b)<<POS_Bx)&MASK1(SIZE_Bx,POS_Bx))))

#define GETARG_sBx(i)   (GETARG_Bx(i)-MAXARG_sBx)
#define SETARG_sBx(i,b) SETARG_Bx((i),cast(unsigned int, (b)+MAXARG_sBx))


#define CREATE_ABC(o,a,b,c) ((cast(Instruction, o)<<POS_OP) \
            | (cast(Instruction, a)<<POS_A) \
            | (cast(Instruction, b)<<POS_B) \
            | (cast(Instruction, c)<<POS_C))

#define CREATE_ABx(o,a,bc)  ((cast(Instruction, o)<<POS_OP) \
            | (cast(Instruction, a)<<POS_A) \
            | (cast(Instruction, bc)<<POS_Bx))


/*
** Macros to operate RK indices
*/

/* this bit 1 means constant (0 means register) */
#define BITRK       (1 << (SIZE_B - 1))

/* test whether value is a constant */
#define ISK(x)      ((x) & BITRK)

/* gets the index of the constant */
#define INDEXK(r)   ((int)(r) & ~BITRK)

#define MAXINDEXRK  (BITRK - 1)

/* code a constant index as a RK value */
#define RKASK(x)    ((x) | BITRK)


/*
** invalid register that fits in 8 bits
*/
#define NO_REG      MAXARG_A


/*
** R(x) - register
** Kst(x) - constant (in constant table)
** RK(x) == if ISK(x) then Kst(INDEXK(x)) else R(x)
*/


/*
** grep "ORDER OP" if you change these enums
*/

typedef enum {
/*----------------------------------------------------------------------
name        args    description
------------------------------------------------------------------------*/
OP_MOVE,/*  A B R(A) := R(B)                    */
OP_LOADK,/* A Bx    R(A) := Kst(Bx)                 */
OP_LOADBOOL,/*  A B C   R(A) := (Bool)B; if (C) pc++            */
OP_LOADNIL,/*   A B R(A) := ... := R(B) := nil          */
OP_GETUPVAL,/*  A B R(A) := UpValue[B]              */

OP_GETGLOBAL,/* A Bx    R(A) := Gbl[Kst(Bx)]                */
OP_GETTABLE,/*  A B C   R(A) := R(B)[RK(C)]             */

OP_SETGLOBAL,/* A Bx    Gbl[Kst(Bx)] := R(A)                */
OP_SETUPVAL,/*  A B UpValue[B] := R(A)              */
OP_SETTABLE,/*  A B C   R(A)[RK(B)] := RK(C)                */

OP_NEWTABLE,/*  A B C   R(A) := {} (size = B,C)             */

OP_SELF,/*  A B C   R(A+1) := R(B); R(A) := R(B)[RK(C)]     */

OP_ADD,/*   A B C   R(A) := RK(B) + RK(C)               */
OP_SUB,/*   A B C   R(A) := RK(B) - RK(C)               */
OP_MUL,/*   A B C   R(A) := RK(B) * RK(C)               */
OP_DIV,/*   A B C   R(A) := RK(B) / RK(C)               */
OP_MOD,/*   A B C   R(A) := RK(B) % RK(C)               */
OP_POW,/*   A B C   R(A) := RK(B) ^ RK(C)               */
OP_UNM,/*   A B R(A) := -R(B)                   */
OP_NOT,/*   A B R(A) := not R(B)                */
OP_LEN,/*   A B R(A) := length of R(B)              */

OP_CONCAT,/*    A B C   R(A) := R(B).. ... ..R(C)           */

OP_JMP,/*   sBx pc+=sBx                 */

OP_EQ,/*    A B C   if ((RK(B) == RK(C)) ~= A) then pc++        */
OP_LT,/*    A B C   if ((RK(B) <  RK(C)) ~= A) then pc++        */
OP_LE,/*    A B C   if ((RK(B) <= RK(C)) ~= A) then pc++        */

OP_TEST,/*  A C if not (R(A) <=> C) then pc++           */
OP_TESTSET,/*   A B C   if (R(B) <=> C) then R(A) := R(B) else pc++ */

OP_CALL,/*  A B C   R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */
OP_TAILCALL,/*  A B C   return R(A)(R(A+1), ... ,R(A+B-1))      */
OP_RETURN,/*    A B return R(A), ... ,R(A+B-2)  (see note)  */

OP_FORLOOP,/*   A sBx   R(A)+=R(A+2);
            if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/
OP_FORPREP,/*   A sBx   R(A)-=R(A+2); pc+=sBx               */

OP_TFORLOOP,/*  A C R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2));
                        if R(A+3) ~= nil then R(A+2)=R(A+3) else pc++   */
OP_SETLIST,/*   A B C   R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B    */

OP_CLOSE,/* A   close all variables in the stack up to (>=) R(A)*/
OP_CLOSURE,/*   A Bx    R(A) := closure(KPROTO[Bx], R(A), ... ,R(A+n))  */

OP_VARARG/* A B R(A), R(A+1), ..., R(A+B-1) = vararg        */
} OpCode;


#define NUM_OPCODES (cast(int, OP_VARARG) + 1)



/*===========================================================================
  Notes:
  (*) In OP_CALL, if (B == 0) then B = top. C is the number of returns - 1,
      and can be 0: OP_CALL then sets `top' to last_result+1, so
      next open instruction (OP_CALL, OP_RETURN, OP_SETLIST) may use `top'.

  (*) In OP_VARARG, if (B == 0) then use actual number of varargs and
      set top (like in OP_CALL with C == 0).

  (*) In OP_RETURN, if (B == 0) then return up to `top'

  (*) In OP_SETLIST, if (B == 0) then B = `top';
      if (C == 0) then next `instruction' is real C

  (*) For comparisons, A specifies what condition the test should accept
      (true or false).

  (*) All `skips' (pc++) assume that next instruction is a jump
===========================================================================*/


/*
** masks for instruction properties. The format is:
** bits 0-1: op mode
** bits 2-3: C arg mode
** bits 4-5: B arg mode
** bit 6: instruction set register A
** bit 7: operator is a test
*/

enum OpArgMask {
  OpArgN,  /* argument is not used */
  OpArgU,  /* argument is used */
  OpArgR,  /* argument is a register or a jump offset */
  OpArgK   /* argument is a constant or register/constant */
};

LUAI_DATA const lu_byte luaP_opmodes[NUM_OPCODES];

#define getOpMode(m)    (cast(enum OpMode, luaP_opmodes[m] & 3))
#define getBMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 4) & 3))
#define getCMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 2) & 3))
#define testAMode(m)    (luaP_opmodes[m] & (1 << 6))
#define testTMode(m)    (luaP_opmodes[m] & (1 << 7))


LUAI_DATA const char *const luaP_opnames[NUM_OPCODES+1];  /* opcode names */


/* number of list items to accumulate before a SETLIST instruction */
#define LFIELDS_PER_FLUSH   50


#endif