- Add distance-divider option to land_dump
- Fix multiplication overflow errors (iy went widly out of bounds)
extern crate fpnum;
use fpnum::distance;
use std::cmp::max;
use std::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, RangeInclusive, Sub, SubAssign};
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
pub struct Point {
pub x: i32,
pub y: i32,
}
impl Point {
#[inline]
pub fn new(x: i32, y: i32) -> Self {
Self { x, y }
}
#[inline]
pub fn zero() -> Self {
Self::new(0, 0)
}
#[inline]
pub fn signum(self) -> Self {
Self::new(self.x.signum(), self.y.signum())
}
#[inline]
pub fn abs(self) -> Self {
Self::new(self.x.abs(), self.y.abs())
}
#[inline]
pub fn dot(self, other: Point) -> i32 {
self.x * other.x + self.y * other.y
}
#[inline]
pub fn max_norm(self) -> i32 {
std::cmp::max(self.x.abs(), self.y.abs())
}
#[inline]
pub fn integral_norm(self) -> u32 {
distance(self.x, self.y).abs_round()
}
#[inline]
pub fn transform(self, matrix: &[i32; 4]) -> Self {
Point::new(
matrix[0] * self.x + matrix[1] * self.y,
matrix[2] * self.x + matrix[3] * self.y,
)
}
#[inline]
pub fn rotate90(self) -> Self {
Point::new(self.y, -self.x)
}
#[inline]
pub fn cross(self, other: Point) -> i32 {
self.dot(other.rotate90())
}
#[inline]
pub fn fit(&self, rect: &Rect) -> Point {
let x = if self.x > rect.right() {
rect.right()
} else if self.x < rect.left() {
rect.left()
} else {
self.x
};
let y = if self.y > rect.bottom() {
rect.bottom()
} else if self.y < rect.top() {
rect.top()
} else {
self.y
};
Point::new(x, y)
}
}
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
pub struct Size {
pub width: usize,
pub height: usize,
}
impl Size {
#[inline]
pub fn new(width: usize, height: usize) -> Self {
Size { width, height }
}
#[inline]
pub fn square(size: usize) -> Self {
Size {
width: size,
height: size,
}
}
#[inline]
pub fn area(&self) -> usize {
self.width * self.height
}
#[inline]
pub fn linear_index(&self, x: usize, y: usize) -> usize {
y * self.width + x
}
#[inline]
pub fn is_power_of_two(&self) -> bool {
self.width.is_power_of_two() && self.height.is_power_of_two()
}
#[inline]
pub fn next_power_of_two(&self) -> Self {
Self {
width: self.width.next_power_of_two(),
height: self.height.next_power_of_two(),
}
}
#[inline]
pub fn to_mask(&self) -> SizeMask {
SizeMask::new(*self)
}
#[inline]
pub fn to_square(&self) -> Size {
Size::square(max(self.width, self.height))
}
pub fn to_grid_index(&self) -> GridIndex {
GridIndex::new(*self)
}
}
pub struct SizeMask {
size: Size,
}
impl SizeMask {
#[inline]
pub fn new(size: Size) -> Self {
assert!(size.is_power_of_two());
let size = Size {
width: !(size.width - 1),
height: !(size.height - 1),
};
Self { size }
}
#[inline]
pub fn contains_x<T: Into<usize>>(&self, x: T) -> bool {
(self.size.width & x.into()) == 0
}
#[inline]
pub fn contains_y<T: Into<usize>>(&self, y: T) -> bool {
(self.size.height & y.into()) == 0
}
#[inline]
pub fn contains(&self, point: Point) -> bool {
self.contains_x(point.x as usize) && self.contains_y(point.y as usize)
}
}
pub struct GridIndex {
shift: Point,
}
impl GridIndex {
pub fn new(size: Size) -> Self {
assert!(size.is_power_of_two());
let shift = Point::new(
size.width.trailing_zeros() as i32,
size.height.trailing_zeros() as i32,
);
Self { shift }
}
pub fn map(&self, position: Point) -> Point {
Point::new(position.x >> self.shift.x, position.y >> self.shift.y)
}
}
macro_rules! bin_op_impl {
($op: ty, $name: tt) => {
impl $op for Point {
type Output = Self;
#[inline]
fn $name(self, rhs: Self) -> Self::Output {
Self::new(self.x.$name(rhs.x), self.y.$name(rhs.y))
}
}
};
}
macro_rules! scalar_bin_op_impl {
($($op: tt)::+, $name: tt) => {
impl $($op)::+<i32> for Point {
type Output = Self;
#[inline]
fn $name(self, rhs: i32) -> Self::Output {
Self::new(self.x.$name(rhs), self.y.$name(rhs))
}
}
};
}
macro_rules! bin_assign_op_impl {
($op: ty, $name: tt) => {
impl $op for Point {
#[inline]
fn $name(&mut self, rhs: Self) {
self.x.$name(rhs.x);
self.y.$name(rhs.y);
}
}
};
}
bin_op_impl!(Add, add);
bin_op_impl!(Sub, sub);
bin_op_impl!(Mul, mul);
bin_op_impl!(Div, div);
scalar_bin_op_impl!(Mul, mul);
scalar_bin_op_impl!(Div, div);
bin_assign_op_impl!(AddAssign, add_assign);
bin_assign_op_impl!(SubAssign, sub_assign);
bin_assign_op_impl!(MulAssign, mul_assign);
bin_assign_op_impl!(DivAssign, div_assign);
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
pub struct Rect {
pub x: i32,
pub y: i32,
pub width: u32,
pub height: u32,
}
impl Rect {
#[inline]
pub fn new(x: i32, y: i32, width: u32, height: u32) -> Self {
Self {
x,
y,
width,
height,
}
}
pub fn from_box(left: i32, right: i32, top: i32, bottom: i32) -> Self {
assert!(left <= right);
assert!(top <= bottom);
Rect::new(left, top, (right - left) as u32, (bottom - top) as u32)
}
pub fn from_size(top_left: Point, size: Size) -> Self {
Rect::new(
top_left.x,
top_left.y,
size.width as u32,
size.height as u32,
)
}
pub fn at_origin(size: Size) -> Self {
Rect::from_size(Point::zero(), size)
}
#[inline]
pub fn size(&self) -> Size {
Size::new(self.width as usize, self.height as usize)
}
#[inline]
pub fn area(&self) -> usize {
self.size().area()
}
#[inline]
pub fn left(&self) -> i32 {
self.x
}
#[inline]
pub fn top(&self) -> i32 {
self.y
}
#[inline]
pub fn right(&self) -> i32 {
self.x + self.width as i32
}
#[inline]
pub fn bottom(&self) -> i32 {
self.y + self.height as i32
}
#[inline]
pub fn top_left(&self) -> Point {
Point::new(self.x, self.y)
}
#[inline]
pub fn bottom_right(&self) -> Point {
Point::new(self.right(), self.bottom())
}
#[inline]
pub fn center(&self) -> Point {
(self.top_left() + self.bottom_right()) / 2
}
#[inline]
pub fn with_margin(&self, margin: i32) -> Self {
Rect::from_box(
self.left() + margin,
self.right() - margin,
self.top() + margin,
self.bottom() - margin,
)
}
#[inline]
pub fn x_range(&self) -> RangeInclusive<i32> {
self.x..=self.x + self.width as i32
}
#[inline]
pub fn y_range(&self) -> RangeInclusive<i32> {
self.y..=self.y + self.height as i32
}
/* requires #[feature(range_contains)]
#[inline]
pub fn contains(&self, point: Point) -> bool {
x_range().contains(point.x) && y_range.contains(point.y)
}*/
#[inline]
pub fn contains_inside(&self, point: Point) -> bool {
point.x > self.left()
&& point.x < self.right()
&& point.y > self.top()
&& point.y < self.bottom()
}
#[inline]
pub fn intersects(&self, other: &Rect) -> bool {
self.left() <= self.right()
&& self.right() >= other.left()
&& self.top() <= other.bottom()
&& self.bottom() >= other.top()
}
#[inline]
pub fn split_at(&self, point: Point) -> [Rect; 4] {
assert!(self.contains_inside(point));
[
Rect::from_box(self.left(), point.x, self.top(), point.y),
Rect::from_box(point.x, self.right(), self.top(), point.y),
Rect::from_box(point.x, self.right(), point.y, self.bottom()),
Rect::from_box(self.left(), point.x, point.y, self.bottom()),
]
}
}
pub struct Polygon {
vertices: Vec<Point>,
}
impl Polygon {
pub fn new(vertices: &[Point]) -> Self {
let mut v = Vec::with_capacity(vertices.len() + 1);
v.extend_from_slice(vertices);
if !v.is_empty() {
let start = v[0];
v.push(start);
}
Self { vertices: v }
}
pub fn edges_count(&self) -> usize {
self.vertices.len() - 1
}
pub fn get_edge(&self, index: usize) -> Line {
Line::new(self.vertices[index], self.vertices[index + 1])
}
pub fn split_edge(&mut self, edge_index: usize, vertex: Point) {
self.vertices.insert(edge_index + 1, vertex);
}
pub fn iter<'a>(&'a self) -> impl Iterator<Item = &Point> + 'a {
(&self.vertices[..self.edges_count()]).iter()
}
pub fn iter_mut<'a>(&'a mut self) -> impl Iterator<Item = &mut Point> + 'a {
let edges_count = self.edges_count();
(&mut self.vertices[..edges_count]).iter_mut()
}
pub fn iter_edges<'a>(&'a self) -> impl Iterator<Item = Line> + 'a {
(&self.vertices[0..self.edges_count()])
.iter()
.zip(&self.vertices[1..])
.map(|(s, e)| Line::new(*s, *e))
}
}
impl From<Vec<Point>> for Polygon {
fn from(mut v: Vec<Point>) -> Self {
if !v.is_empty() && v[0] != v[v.len() - 1] {
let start = v[0];
v.push(start)
}
Self { vertices: v }
}
}
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
pub struct Line {
pub start: Point,
pub end: Point,
}
impl Line {
#[inline]
pub fn new(start: Point, end: Point) -> Self {
Self { start, end }
}
#[inline]
pub fn zero() -> Self {
Self::new(Point::zero(), Point::zero())
}
#[inline]
pub fn center(&self) -> Point {
(self.start + self.end) / 2
}
#[inline]
pub fn scaled_normal(&self) -> Point {
(self.end - self.start).rotate90()
}
}
impl IntoIterator for Line {
type Item = Point;
type IntoIter = LinePoints;
fn into_iter(self) -> Self::IntoIter {
LinePoints::new(self)
}
}
pub struct LinePoints {
accumulator: Point,
direction: Point,
sign: Point,
current: Point,
total_steps: i32,
step: i32,
}
impl LinePoints {
pub fn new(line: Line) -> Self {
let dir = line.end - line.start;
Self {
accumulator: Point::zero(),
direction: dir.abs(),
sign: dir.signum(),
current: line.start,
total_steps: dir.max_norm(),
step: 0,
}
}
}
impl Iterator for LinePoints {
type Item = Point;
fn next(&mut self) -> Option<Self::Item> {
if self.step <= self.total_steps {
self.accumulator += self.direction;
if self.accumulator.x > self.total_steps {
self.accumulator.x -= self.total_steps;
self.current.x += self.sign.x;
}
if self.accumulator.y > self.total_steps {
self.accumulator.y -= self.total_steps;
self.current.y += self.sign.y;
}
self.step += 1;
Some(self.current)
} else {
None
}
}
}
pub struct ArcPoints {
point: Point,
step: i32,
}
impl ArcPoints {
pub fn new(radius: i32) -> Self {
Self {
point: Point::new(0, radius),
step: 3 - 2 * radius,
}
}
}
impl Iterator for ArcPoints {
type Item = Point;
fn next(&mut self) -> Option<Self::Item> {
if self.point.x < self.point.y {
let result = self.point;
if self.step < 0 {
self.step += self.point.x * 4 + 6;
} else {
self.step += (self.point.x - self.point.y) * 4 + 10;
self.point.y -= 1;
}
self.point.x += 1;
Some(result)
} else if self.point.x == self.point.y {
self.point.x += 1;
Some(self.point)
} else {
None
}
}
}
pub struct EquidistantPoints {
vector: Point,
iteration: u8,
}
impl EquidistantPoints {
pub fn new(vector: Point) -> Self {
Self {
vector,
iteration: if vector.x == vector.y { 4 } else { 8 },
}
}
}
impl Iterator for EquidistantPoints {
type Item = Point;
fn next(&mut self) -> Option<Self::Item> {
if self.iteration > 0 {
self.vector.x = -self.vector.x;
if self.iteration & 1 == 0 {
self.vector.y = -self.vector.y;
}
if self.iteration == 4 {
std::mem::swap(&mut self.vector.x, &mut self.vector.y);
}
self.iteration -= 1;
Some(self.vector)
} else {
None
}
}
}
#[cfg(test)]
mod tests {
use super::*;
fn get_points(coords: &[(i32, i32)]) -> Vec<Point> {
coords.iter().map(|(x, y)| Point::new(*x, *y)).collect()
}
#[test]
fn line_basic() {
let line: Vec<Point> = Line::new(Point::new(0, 0), Point::new(3, 3))
.into_iter()
.collect();
let v = get_points(&[(0, 0), (1, 1), (2, 2), (3, 3)]);
assert_eq!(line, v);
}
#[test]
fn line_skewed() {
let line: Vec<Point> = Line::new(Point::new(0, 0), Point::new(5, -7))
.into_iter()
.collect();
let v = get_points(&[
(0, 0),
(1, -1),
(2, -2),
(2, -3),
(3, -4),
(4, -5),
(4, -6),
(5, -7),
]);
assert_eq!(line, v);
}
#[test]
fn equidistant_full() {
let n: Vec<Point> = EquidistantPoints::new(Point::new(1, 3)).collect();
let v = get_points(&[
(-1, -3),
(1, -3),
(-1, 3),
(1, 3),
(-3, -1),
(3, -1),
(-3, 1),
(3, 1),
]);
assert_eq!(n, v);
}
#[test]
fn equidistant_half() {
let n: Vec<Point> = EquidistantPoints::new(Point::new(2, 2)).collect();
let v = get_points(&[(-2, -2), (2, -2), (-2, 2), (2, 2)]);
assert_eq!(n, v);
}
#[test]
fn line() {
let l = Line::new(Point::new(1, 1), Point::new(5, 6));
assert_eq!(l.center(), Point::new(3, 3));
}
#[test]
fn rect() {
let r = Rect::from_box(10, 100, 0, 70);
assert!(r.contains_inside(Point::new(99, 69)));
assert!(!r.contains_inside(Point::new(100, 70)));
assert_eq!(r.top_left(), Point::new(10, 0));
assert_eq!(r.with_margin(12), Rect::from_box(22, 88, 12, 58));
}
#[test]
fn fit() {
let r = Rect::from_box(10, 100, 0, 70);
assert_eq!(Point::new(0, -10).fit(&r), Point::new(10, 0));
assert_eq!(Point::new(1000, 1000).fit(&r), Point::new(100, 70));
}
}