|
1 // BranchX86_2.c |
|
2 |
|
3 #include "BranchX86_2.h" |
|
4 |
|
5 #include "../../Alloc.h" |
|
6 |
|
7 #ifdef _LZMA_PROB32 |
|
8 #define CProb UInt32 |
|
9 #else |
|
10 #define CProb UInt16 |
|
11 #endif |
|
12 |
|
13 #define IsJcc(b0, b1) ((b0) == 0x0F && ((b1) & 0xF0) == 0x80) |
|
14 #define IsJ(b0, b1) ((b1 & 0xFE) == 0xE8 || IsJcc(b0, b1)) |
|
15 |
|
16 #define kNumTopBits 24 |
|
17 #define kTopValue ((UInt32)1 << kNumTopBits) |
|
18 |
|
19 #define kNumBitModelTotalBits 11 |
|
20 #define kBitModelTotal (1 << kNumBitModelTotalBits) |
|
21 #define kNumMoveBits 5 |
|
22 |
|
23 #define RC_READ_BYTE (*Buffer++) |
|
24 |
|
25 #define RC_INIT2 Code = 0; Range = 0xFFFFFFFF; \ |
|
26 { int i; for(i = 0; i < 5; i++) { RC_TEST; Code = (Code << 8) | RC_READ_BYTE; }} |
|
27 |
|
28 #define RC_TEST { if (Buffer == BufferLim) return BCJ2_RESULT_DATA_ERROR; } |
|
29 |
|
30 #define RC_INIT(buffer, bufferSize) Buffer = buffer; BufferLim = buffer + bufferSize; RC_INIT2 |
|
31 |
|
32 #define RC_NORMALIZE if (Range < kTopValue) { RC_TEST; Range <<= 8; Code = (Code << 8) | RC_READ_BYTE; } |
|
33 |
|
34 #define IfBit0(p) RC_NORMALIZE; bound = (Range >> kNumBitModelTotalBits) * *(p); if (Code < bound) |
|
35 #define UpdateBit0(p) Range = bound; *(p) += (kBitModelTotal - *(p)) >> kNumMoveBits; |
|
36 #define UpdateBit1(p) Range -= bound; Code -= bound; *(p) -= (*(p)) >> kNumMoveBits; |
|
37 // #define UpdateBit0(p) Range = bound; *(p) = (CProb)(*(p) + ((kBitModelTotal - *(p)) >> kNumMoveBits)); |
|
38 // #define UpdateBit1(p) Range -= bound; Code -= bound; *(p) = (CProb)(*(p) - (*(p) >> kNumMoveBits)); |
|
39 |
|
40 int x86_2_Decode( |
|
41 const Byte *buf0, SizeT size0, |
|
42 const Byte *buf1, SizeT size1, |
|
43 const Byte *buf2, SizeT size2, |
|
44 const Byte *buf3, SizeT size3, |
|
45 Byte *outBuf, SizeT outSize) |
|
46 { |
|
47 CProb p[256 + 2]; |
|
48 SizeT inPos = 0, outPos = 0; |
|
49 |
|
50 const Byte *Buffer, *BufferLim; |
|
51 UInt32 Range, Code; |
|
52 Byte prevByte = 0; |
|
53 |
|
54 unsigned int i; |
|
55 for (i = 0; i < sizeof(p) / sizeof(p[0]); i++) |
|
56 p[i] = kBitModelTotal >> 1; |
|
57 RC_INIT(buf3, size3); |
|
58 |
|
59 if (outSize == 0) |
|
60 return BCJ2_RESULT_OK; |
|
61 |
|
62 for (;;) |
|
63 { |
|
64 Byte b; |
|
65 CProb *prob; |
|
66 UInt32 bound; |
|
67 |
|
68 SizeT limit = size0 - inPos; |
|
69 if (outSize - outPos < limit) |
|
70 limit = outSize - outPos; |
|
71 while (limit != 0) |
|
72 { |
|
73 Byte b = buf0[inPos]; |
|
74 outBuf[outPos++] = b; |
|
75 if (IsJ(prevByte, b)) |
|
76 break; |
|
77 inPos++; |
|
78 prevByte = b; |
|
79 limit--; |
|
80 } |
|
81 |
|
82 if (limit == 0 || outPos == outSize) |
|
83 break; |
|
84 |
|
85 b = buf0[inPos++]; |
|
86 |
|
87 if (b == 0xE8) |
|
88 prob = p + prevByte; |
|
89 else if (b == 0xE9) |
|
90 prob = p + 256; |
|
91 else |
|
92 prob = p + 257; |
|
93 |
|
94 IfBit0(prob) |
|
95 { |
|
96 UpdateBit0(prob) |
|
97 prevByte = b; |
|
98 } |
|
99 else |
|
100 { |
|
101 UInt32 dest; |
|
102 const Byte *v; |
|
103 UpdateBit1(prob) |
|
104 if (b == 0xE8) |
|
105 { |
|
106 v = buf1; |
|
107 if (size1 < 4) |
|
108 return BCJ2_RESULT_DATA_ERROR; |
|
109 buf1 += 4; |
|
110 size1 -= 4; |
|
111 } |
|
112 else |
|
113 { |
|
114 v = buf2; |
|
115 if (size2 < 4) |
|
116 return BCJ2_RESULT_DATA_ERROR; |
|
117 buf2 += 4; |
|
118 size2 -= 4; |
|
119 } |
|
120 dest = (((UInt32)v[0] << 24) | ((UInt32)v[1] << 16) | |
|
121 ((UInt32)v[2] << 8) | ((UInt32)v[3])) - ((UInt32)outPos + 4); |
|
122 outBuf[outPos++] = (Byte)dest; |
|
123 if (outPos == outSize) |
|
124 break; |
|
125 outBuf[outPos++] = (Byte)(dest >> 8); |
|
126 if (outPos == outSize) |
|
127 break; |
|
128 outBuf[outPos++] = (Byte)(dest >> 16); |
|
129 if (outPos == outSize) |
|
130 break; |
|
131 outBuf[outPos++] = prevByte = (Byte)(dest >> 24); |
|
132 } |
|
133 } |
|
134 return (outPos == outSize) ? BCJ2_RESULT_OK : BCJ2_RESULT_DATA_ERROR; |
|
135 } |