1 /***************************************************************************/ |
|
2 /* */ |
|
3 /* ftbbox.c */ |
|
4 /* */ |
|
5 /* FreeType bbox computation (body). */ |
|
6 /* */ |
|
7 /* Copyright 1996-2001, 2002, 2004, 2006, 2010 by */ |
|
8 /* David Turner, Robert Wilhelm, and Werner Lemberg. */ |
|
9 /* */ |
|
10 /* This file is part of the FreeType project, and may only be used */ |
|
11 /* modified and distributed under the terms of the FreeType project */ |
|
12 /* license, LICENSE.TXT. By continuing to use, modify, or distribute */ |
|
13 /* this file you indicate that you have read the license and */ |
|
14 /* understand and accept it fully. */ |
|
15 /* */ |
|
16 /***************************************************************************/ |
|
17 |
|
18 |
|
19 /*************************************************************************/ |
|
20 /* */ |
|
21 /* This component has a _single_ role: to compute exact outline bounding */ |
|
22 /* boxes. */ |
|
23 /* */ |
|
24 /*************************************************************************/ |
|
25 |
|
26 |
|
27 #include <ft2build.h> |
|
28 #include FT_BBOX_H |
|
29 #include FT_IMAGE_H |
|
30 #include FT_OUTLINE_H |
|
31 #include FT_INTERNAL_CALC_H |
|
32 #include FT_INTERNAL_OBJECTS_H |
|
33 |
|
34 |
|
35 typedef struct TBBox_Rec_ |
|
36 { |
|
37 FT_Vector last; |
|
38 FT_BBox bbox; |
|
39 |
|
40 } TBBox_Rec; |
|
41 |
|
42 |
|
43 /*************************************************************************/ |
|
44 /* */ |
|
45 /* <Function> */ |
|
46 /* BBox_Move_To */ |
|
47 /* */ |
|
48 /* <Description> */ |
|
49 /* This function is used as a `move_to' and `line_to' emitter during */ |
|
50 /* FT_Outline_Decompose(). It simply records the destination point */ |
|
51 /* in `user->last'; no further computations are necessary since we */ |
|
52 /* use the cbox as the starting bbox which must be refined. */ |
|
53 /* */ |
|
54 /* <Input> */ |
|
55 /* to :: A pointer to the destination vector. */ |
|
56 /* */ |
|
57 /* <InOut> */ |
|
58 /* user :: A pointer to the current walk context. */ |
|
59 /* */ |
|
60 /* <Return> */ |
|
61 /* Always 0. Needed for the interface only. */ |
|
62 /* */ |
|
63 static int |
|
64 BBox_Move_To( FT_Vector* to, |
|
65 TBBox_Rec* user ) |
|
66 { |
|
67 user->last = *to; |
|
68 |
|
69 return 0; |
|
70 } |
|
71 |
|
72 |
|
73 #define CHECK_X( p, bbox ) \ |
|
74 ( p->x < bbox.xMin || p->x > bbox.xMax ) |
|
75 |
|
76 #define CHECK_Y( p, bbox ) \ |
|
77 ( p->y < bbox.yMin || p->y > bbox.yMax ) |
|
78 |
|
79 |
|
80 /*************************************************************************/ |
|
81 /* */ |
|
82 /* <Function> */ |
|
83 /* BBox_Conic_Check */ |
|
84 /* */ |
|
85 /* <Description> */ |
|
86 /* Finds the extrema of a 1-dimensional conic Bezier curve and update */ |
|
87 /* a bounding range. This version uses direct computation, as it */ |
|
88 /* doesn't need square roots. */ |
|
89 /* */ |
|
90 /* <Input> */ |
|
91 /* y1 :: The start coordinate. */ |
|
92 /* */ |
|
93 /* y2 :: The coordinate of the control point. */ |
|
94 /* */ |
|
95 /* y3 :: The end coordinate. */ |
|
96 /* */ |
|
97 /* <InOut> */ |
|
98 /* min :: The address of the current minimum. */ |
|
99 /* */ |
|
100 /* max :: The address of the current maximum. */ |
|
101 /* */ |
|
102 static void |
|
103 BBox_Conic_Check( FT_Pos y1, |
|
104 FT_Pos y2, |
|
105 FT_Pos y3, |
|
106 FT_Pos* min, |
|
107 FT_Pos* max ) |
|
108 { |
|
109 if ( y1 <= y3 && y2 == y1 ) /* flat arc */ |
|
110 goto Suite; |
|
111 |
|
112 if ( y1 < y3 ) |
|
113 { |
|
114 if ( y2 >= y1 && y2 <= y3 ) /* ascending arc */ |
|
115 goto Suite; |
|
116 } |
|
117 else |
|
118 { |
|
119 if ( y2 >= y3 && y2 <= y1 ) /* descending arc */ |
|
120 { |
|
121 y2 = y1; |
|
122 y1 = y3; |
|
123 y3 = y2; |
|
124 goto Suite; |
|
125 } |
|
126 } |
|
127 |
|
128 y1 = y3 = y1 - FT_MulDiv( y2 - y1, y2 - y1, y1 - 2*y2 + y3 ); |
|
129 |
|
130 Suite: |
|
131 if ( y1 < *min ) *min = y1; |
|
132 if ( y3 > *max ) *max = y3; |
|
133 } |
|
134 |
|
135 |
|
136 /*************************************************************************/ |
|
137 /* */ |
|
138 /* <Function> */ |
|
139 /* BBox_Conic_To */ |
|
140 /* */ |
|
141 /* <Description> */ |
|
142 /* This function is used as a `conic_to' emitter during */ |
|
143 /* FT_Outline_Decompose(). It checks a conic Bezier curve with the */ |
|
144 /* current bounding box, and computes its extrema if necessary to */ |
|
145 /* update it. */ |
|
146 /* */ |
|
147 /* <Input> */ |
|
148 /* control :: A pointer to a control point. */ |
|
149 /* */ |
|
150 /* to :: A pointer to the destination vector. */ |
|
151 /* */ |
|
152 /* <InOut> */ |
|
153 /* user :: The address of the current walk context. */ |
|
154 /* */ |
|
155 /* <Return> */ |
|
156 /* Always 0. Needed for the interface only. */ |
|
157 /* */ |
|
158 /* <Note> */ |
|
159 /* In the case of a non-monotonous arc, we compute directly the */ |
|
160 /* extremum coordinates, as it is sufficiently fast. */ |
|
161 /* */ |
|
162 static int |
|
163 BBox_Conic_To( FT_Vector* control, |
|
164 FT_Vector* to, |
|
165 TBBox_Rec* user ) |
|
166 { |
|
167 /* we don't need to check `to' since it is always an `on' point, thus */ |
|
168 /* within the bbox */ |
|
169 |
|
170 if ( CHECK_X( control, user->bbox ) ) |
|
171 BBox_Conic_Check( user->last.x, |
|
172 control->x, |
|
173 to->x, |
|
174 &user->bbox.xMin, |
|
175 &user->bbox.xMax ); |
|
176 |
|
177 if ( CHECK_Y( control, user->bbox ) ) |
|
178 BBox_Conic_Check( user->last.y, |
|
179 control->y, |
|
180 to->y, |
|
181 &user->bbox.yMin, |
|
182 &user->bbox.yMax ); |
|
183 |
|
184 user->last = *to; |
|
185 |
|
186 return 0; |
|
187 } |
|
188 |
|
189 |
|
190 /*************************************************************************/ |
|
191 /* */ |
|
192 /* <Function> */ |
|
193 /* BBox_Cubic_Check */ |
|
194 /* */ |
|
195 /* <Description> */ |
|
196 /* Finds the extrema of a 1-dimensional cubic Bezier curve and */ |
|
197 /* updates a bounding range. This version uses splitting because we */ |
|
198 /* don't want to use square roots and extra accuracy. */ |
|
199 /* */ |
|
200 /* <Input> */ |
|
201 /* p1 :: The start coordinate. */ |
|
202 /* */ |
|
203 /* p2 :: The coordinate of the first control point. */ |
|
204 /* */ |
|
205 /* p3 :: The coordinate of the second control point. */ |
|
206 /* */ |
|
207 /* p4 :: The end coordinate. */ |
|
208 /* */ |
|
209 /* <InOut> */ |
|
210 /* min :: The address of the current minimum. */ |
|
211 /* */ |
|
212 /* max :: The address of the current maximum. */ |
|
213 /* */ |
|
214 |
|
215 #if 0 |
|
216 |
|
217 static void |
|
218 BBox_Cubic_Check( FT_Pos p1, |
|
219 FT_Pos p2, |
|
220 FT_Pos p3, |
|
221 FT_Pos p4, |
|
222 FT_Pos* min, |
|
223 FT_Pos* max ) |
|
224 { |
|
225 FT_Pos stack[32*3 + 1], *arc; |
|
226 |
|
227 |
|
228 arc = stack; |
|
229 |
|
230 arc[0] = p1; |
|
231 arc[1] = p2; |
|
232 arc[2] = p3; |
|
233 arc[3] = p4; |
|
234 |
|
235 do |
|
236 { |
|
237 FT_Pos y1 = arc[0]; |
|
238 FT_Pos y2 = arc[1]; |
|
239 FT_Pos y3 = arc[2]; |
|
240 FT_Pos y4 = arc[3]; |
|
241 |
|
242 |
|
243 if ( y1 == y4 ) |
|
244 { |
|
245 if ( y1 == y2 && y1 == y3 ) /* flat */ |
|
246 goto Test; |
|
247 } |
|
248 else if ( y1 < y4 ) |
|
249 { |
|
250 if ( y2 >= y1 && y2 <= y4 && y3 >= y1 && y3 <= y4 ) /* ascending */ |
|
251 goto Test; |
|
252 } |
|
253 else |
|
254 { |
|
255 if ( y2 >= y4 && y2 <= y1 && y3 >= y4 && y3 <= y1 ) /* descending */ |
|
256 { |
|
257 y2 = y1; |
|
258 y1 = y4; |
|
259 y4 = y2; |
|
260 goto Test; |
|
261 } |
|
262 } |
|
263 |
|
264 /* unknown direction -- split the arc in two */ |
|
265 arc[6] = y4; |
|
266 arc[1] = y1 = ( y1 + y2 ) / 2; |
|
267 arc[5] = y4 = ( y4 + y3 ) / 2; |
|
268 y2 = ( y2 + y3 ) / 2; |
|
269 arc[2] = y1 = ( y1 + y2 ) / 2; |
|
270 arc[4] = y4 = ( y4 + y2 ) / 2; |
|
271 arc[3] = ( y1 + y4 ) / 2; |
|
272 |
|
273 arc += 3; |
|
274 goto Suite; |
|
275 |
|
276 Test: |
|
277 if ( y1 < *min ) *min = y1; |
|
278 if ( y4 > *max ) *max = y4; |
|
279 arc -= 3; |
|
280 |
|
281 Suite: |
|
282 ; |
|
283 } while ( arc >= stack ); |
|
284 } |
|
285 |
|
286 #else |
|
287 |
|
288 static void |
|
289 test_cubic_extrema( FT_Pos y1, |
|
290 FT_Pos y2, |
|
291 FT_Pos y3, |
|
292 FT_Pos y4, |
|
293 FT_Fixed u, |
|
294 FT_Pos* min, |
|
295 FT_Pos* max ) |
|
296 { |
|
297 /* FT_Pos a = y4 - 3*y3 + 3*y2 - y1; */ |
|
298 FT_Pos b = y3 - 2*y2 + y1; |
|
299 FT_Pos c = y2 - y1; |
|
300 FT_Pos d = y1; |
|
301 FT_Pos y; |
|
302 FT_Fixed uu; |
|
303 |
|
304 FT_UNUSED ( y4 ); |
|
305 |
|
306 |
|
307 /* The polynomial is */ |
|
308 /* */ |
|
309 /* P(x) = a*x^3 + 3b*x^2 + 3c*x + d , */ |
|
310 /* */ |
|
311 /* dP/dx = 3a*x^2 + 6b*x + 3c . */ |
|
312 /* */ |
|
313 /* However, we also have */ |
|
314 /* */ |
|
315 /* dP/dx(u) = 0 , */ |
|
316 /* */ |
|
317 /* which implies by subtraction that */ |
|
318 /* */ |
|
319 /* P(u) = b*u^2 + 2c*u + d . */ |
|
320 |
|
321 if ( u > 0 && u < 0x10000L ) |
|
322 { |
|
323 uu = FT_MulFix( u, u ); |
|
324 y = d + FT_MulFix( c, 2*u ) + FT_MulFix( b, uu ); |
|
325 |
|
326 if ( y < *min ) *min = y; |
|
327 if ( y > *max ) *max = y; |
|
328 } |
|
329 } |
|
330 |
|
331 |
|
332 static void |
|
333 BBox_Cubic_Check( FT_Pos y1, |
|
334 FT_Pos y2, |
|
335 FT_Pos y3, |
|
336 FT_Pos y4, |
|
337 FT_Pos* min, |
|
338 FT_Pos* max ) |
|
339 { |
|
340 /* always compare first and last points */ |
|
341 if ( y1 < *min ) *min = y1; |
|
342 else if ( y1 > *max ) *max = y1; |
|
343 |
|
344 if ( y4 < *min ) *min = y4; |
|
345 else if ( y4 > *max ) *max = y4; |
|
346 |
|
347 /* now, try to see if there are split points here */ |
|
348 if ( y1 <= y4 ) |
|
349 { |
|
350 /* flat or ascending arc test */ |
|
351 if ( y1 <= y2 && y2 <= y4 && y1 <= y3 && y3 <= y4 ) |
|
352 return; |
|
353 } |
|
354 else /* y1 > y4 */ |
|
355 { |
|
356 /* descending arc test */ |
|
357 if ( y1 >= y2 && y2 >= y4 && y1 >= y3 && y3 >= y4 ) |
|
358 return; |
|
359 } |
|
360 |
|
361 /* There are some split points. Find them. */ |
|
362 { |
|
363 FT_Pos a = y4 - 3*y3 + 3*y2 - y1; |
|
364 FT_Pos b = y3 - 2*y2 + y1; |
|
365 FT_Pos c = y2 - y1; |
|
366 FT_Pos d; |
|
367 FT_Fixed t; |
|
368 |
|
369 |
|
370 /* We need to solve `ax^2+2bx+c' here, without floating points! */ |
|
371 /* The trick is to normalize to a different representation in order */ |
|
372 /* to use our 16.16 fixed point routines. */ |
|
373 /* */ |
|
374 /* We compute FT_MulFix(b,b) and FT_MulFix(a,c) after normalization. */ |
|
375 /* These values must fit into a single 16.16 value. */ |
|
376 /* */ |
|
377 /* We normalize a, b, and c to `8.16' fixed float values to ensure */ |
|
378 /* that its product is held in a `16.16' value. */ |
|
379 |
|
380 { |
|
381 FT_ULong t1, t2; |
|
382 int shift = 0; |
|
383 |
|
384 |
|
385 /* The following computation is based on the fact that for */ |
|
386 /* any value `y', if `n' is the position of the most */ |
|
387 /* significant bit of `abs(y)' (starting from 0 for the */ |
|
388 /* least significant bit), then `y' is in the range */ |
|
389 /* */ |
|
390 /* -2^n..2^n-1 */ |
|
391 /* */ |
|
392 /* We want to shift `a', `b', and `c' concurrently in order */ |
|
393 /* to ensure that they all fit in 8.16 values, which maps */ |
|
394 /* to the integer range `-2^23..2^23-1'. */ |
|
395 /* */ |
|
396 /* Necessarily, we need to shift `a', `b', and `c' so that */ |
|
397 /* the most significant bit of its absolute values is at */ |
|
398 /* _most_ at position 23. */ |
|
399 /* */ |
|
400 /* We begin by computing `t1' as the bitwise `OR' of the */ |
|
401 /* absolute values of `a', `b', `c'. */ |
|
402 |
|
403 t1 = (FT_ULong)( ( a >= 0 ) ? a : -a ); |
|
404 t2 = (FT_ULong)( ( b >= 0 ) ? b : -b ); |
|
405 t1 |= t2; |
|
406 t2 = (FT_ULong)( ( c >= 0 ) ? c : -c ); |
|
407 t1 |= t2; |
|
408 |
|
409 /* Now we can be sure that the most significant bit of `t1' */ |
|
410 /* is the most significant bit of either `a', `b', or `c', */ |
|
411 /* depending on the greatest integer range of the particular */ |
|
412 /* variable. */ |
|
413 /* */ |
|
414 /* Next, we compute the `shift', by shifting `t1' as many */ |
|
415 /* times as necessary to move its MSB to position 23. This */ |
|
416 /* corresponds to a value of `t1' that is in the range */ |
|
417 /* 0x40_0000..0x7F_FFFF. */ |
|
418 /* */ |
|
419 /* Finally, we shift `a', `b', and `c' by the same amount. */ |
|
420 /* This ensures that all values are now in the range */ |
|
421 /* -2^23..2^23, i.e., they are now expressed as 8.16 */ |
|
422 /* fixed-float numbers. This also means that we are using */ |
|
423 /* 24 bits of precision to compute the zeros, independently */ |
|
424 /* of the range of the original polynomial coefficients. */ |
|
425 /* */ |
|
426 /* This algorithm should ensure reasonably accurate values */ |
|
427 /* for the zeros. Note that they are only expressed with */ |
|
428 /* 16 bits when computing the extrema (the zeros need to */ |
|
429 /* be in 0..1 exclusive to be considered part of the arc). */ |
|
430 |
|
431 if ( t1 == 0 ) /* all coefficients are 0! */ |
|
432 return; |
|
433 |
|
434 if ( t1 > 0x7FFFFFUL ) |
|
435 { |
|
436 do |
|
437 { |
|
438 shift++; |
|
439 t1 >>= 1; |
|
440 |
|
441 } while ( t1 > 0x7FFFFFUL ); |
|
442 |
|
443 /* this loses some bits of precision, but we use 24 of them */ |
|
444 /* for the computation anyway */ |
|
445 a >>= shift; |
|
446 b >>= shift; |
|
447 c >>= shift; |
|
448 } |
|
449 else if ( t1 < 0x400000UL ) |
|
450 { |
|
451 do |
|
452 { |
|
453 shift++; |
|
454 t1 <<= 1; |
|
455 |
|
456 } while ( t1 < 0x400000UL ); |
|
457 |
|
458 a <<= shift; |
|
459 b <<= shift; |
|
460 c <<= shift; |
|
461 } |
|
462 } |
|
463 |
|
464 /* handle a == 0 */ |
|
465 if ( a == 0 ) |
|
466 { |
|
467 if ( b != 0 ) |
|
468 { |
|
469 t = - FT_DivFix( c, b ) / 2; |
|
470 test_cubic_extrema( y1, y2, y3, y4, t, min, max ); |
|
471 } |
|
472 } |
|
473 else |
|
474 { |
|
475 /* solve the equation now */ |
|
476 d = FT_MulFix( b, b ) - FT_MulFix( a, c ); |
|
477 if ( d < 0 ) |
|
478 return; |
|
479 |
|
480 if ( d == 0 ) |
|
481 { |
|
482 /* there is a single split point at -b/a */ |
|
483 t = - FT_DivFix( b, a ); |
|
484 test_cubic_extrema( y1, y2, y3, y4, t, min, max ); |
|
485 } |
|
486 else |
|
487 { |
|
488 /* there are two solutions; we need to filter them */ |
|
489 d = FT_SqrtFixed( (FT_Int32)d ); |
|
490 t = - FT_DivFix( b - d, a ); |
|
491 test_cubic_extrema( y1, y2, y3, y4, t, min, max ); |
|
492 |
|
493 t = - FT_DivFix( b + d, a ); |
|
494 test_cubic_extrema( y1, y2, y3, y4, t, min, max ); |
|
495 } |
|
496 } |
|
497 } |
|
498 } |
|
499 |
|
500 #endif |
|
501 |
|
502 |
|
503 /*************************************************************************/ |
|
504 /* */ |
|
505 /* <Function> */ |
|
506 /* BBox_Cubic_To */ |
|
507 /* */ |
|
508 /* <Description> */ |
|
509 /* This function is used as a `cubic_to' emitter during */ |
|
510 /* FT_Outline_Decompose(). It checks a cubic Bezier curve with the */ |
|
511 /* current bounding box, and computes its extrema if necessary to */ |
|
512 /* update it. */ |
|
513 /* */ |
|
514 /* <Input> */ |
|
515 /* control1 :: A pointer to the first control point. */ |
|
516 /* */ |
|
517 /* control2 :: A pointer to the second control point. */ |
|
518 /* */ |
|
519 /* to :: A pointer to the destination vector. */ |
|
520 /* */ |
|
521 /* <InOut> */ |
|
522 /* user :: The address of the current walk context. */ |
|
523 /* */ |
|
524 /* <Return> */ |
|
525 /* Always 0. Needed for the interface only. */ |
|
526 /* */ |
|
527 /* <Note> */ |
|
528 /* In the case of a non-monotonous arc, we don't compute directly */ |
|
529 /* extremum coordinates, we subdivide instead. */ |
|
530 /* */ |
|
531 static int |
|
532 BBox_Cubic_To( FT_Vector* control1, |
|
533 FT_Vector* control2, |
|
534 FT_Vector* to, |
|
535 TBBox_Rec* user ) |
|
536 { |
|
537 /* we don't need to check `to' since it is always an `on' point, thus */ |
|
538 /* within the bbox */ |
|
539 |
|
540 if ( CHECK_X( control1, user->bbox ) || |
|
541 CHECK_X( control2, user->bbox ) ) |
|
542 BBox_Cubic_Check( user->last.x, |
|
543 control1->x, |
|
544 control2->x, |
|
545 to->x, |
|
546 &user->bbox.xMin, |
|
547 &user->bbox.xMax ); |
|
548 |
|
549 if ( CHECK_Y( control1, user->bbox ) || |
|
550 CHECK_Y( control2, user->bbox ) ) |
|
551 BBox_Cubic_Check( user->last.y, |
|
552 control1->y, |
|
553 control2->y, |
|
554 to->y, |
|
555 &user->bbox.yMin, |
|
556 &user->bbox.yMax ); |
|
557 |
|
558 user->last = *to; |
|
559 |
|
560 return 0; |
|
561 } |
|
562 |
|
563 FT_DEFINE_OUTLINE_FUNCS(bbox_interface, |
|
564 (FT_Outline_MoveTo_Func) BBox_Move_To, |
|
565 (FT_Outline_LineTo_Func) BBox_Move_To, |
|
566 (FT_Outline_ConicTo_Func)BBox_Conic_To, |
|
567 (FT_Outline_CubicTo_Func)BBox_Cubic_To, |
|
568 0, 0 |
|
569 ) |
|
570 |
|
571 /* documentation is in ftbbox.h */ |
|
572 |
|
573 FT_EXPORT_DEF( FT_Error ) |
|
574 FT_Outline_Get_BBox( FT_Outline* outline, |
|
575 FT_BBox *abbox ) |
|
576 { |
|
577 FT_BBox cbox; |
|
578 FT_BBox bbox; |
|
579 FT_Vector* vec; |
|
580 FT_UShort n; |
|
581 |
|
582 |
|
583 if ( !abbox ) |
|
584 return FT_Err_Invalid_Argument; |
|
585 |
|
586 if ( !outline ) |
|
587 return FT_Err_Invalid_Outline; |
|
588 |
|
589 /* if outline is empty, return (0,0,0,0) */ |
|
590 if ( outline->n_points == 0 || outline->n_contours <= 0 ) |
|
591 { |
|
592 abbox->xMin = abbox->xMax = 0; |
|
593 abbox->yMin = abbox->yMax = 0; |
|
594 return 0; |
|
595 } |
|
596 |
|
597 /* We compute the control box as well as the bounding box of */ |
|
598 /* all `on' points in the outline. Then, if the two boxes */ |
|
599 /* coincide, we exit immediately. */ |
|
600 |
|
601 vec = outline->points; |
|
602 bbox.xMin = bbox.xMax = cbox.xMin = cbox.xMax = vec->x; |
|
603 bbox.yMin = bbox.yMax = cbox.yMin = cbox.yMax = vec->y; |
|
604 vec++; |
|
605 |
|
606 for ( n = 1; n < outline->n_points; n++ ) |
|
607 { |
|
608 FT_Pos x = vec->x; |
|
609 FT_Pos y = vec->y; |
|
610 |
|
611 |
|
612 /* update control box */ |
|
613 if ( x < cbox.xMin ) cbox.xMin = x; |
|
614 if ( x > cbox.xMax ) cbox.xMax = x; |
|
615 |
|
616 if ( y < cbox.yMin ) cbox.yMin = y; |
|
617 if ( y > cbox.yMax ) cbox.yMax = y; |
|
618 |
|
619 if ( FT_CURVE_TAG( outline->tags[n] ) == FT_CURVE_TAG_ON ) |
|
620 { |
|
621 /* update bbox for `on' points only */ |
|
622 if ( x < bbox.xMin ) bbox.xMin = x; |
|
623 if ( x > bbox.xMax ) bbox.xMax = x; |
|
624 |
|
625 if ( y < bbox.yMin ) bbox.yMin = y; |
|
626 if ( y > bbox.yMax ) bbox.yMax = y; |
|
627 } |
|
628 |
|
629 vec++; |
|
630 } |
|
631 |
|
632 /* test two boxes for equality */ |
|
633 if ( cbox.xMin < bbox.xMin || cbox.xMax > bbox.xMax || |
|
634 cbox.yMin < bbox.yMin || cbox.yMax > bbox.yMax ) |
|
635 { |
|
636 /* the two boxes are different, now walk over the outline to */ |
|
637 /* get the Bezier arc extrema. */ |
|
638 |
|
639 FT_Error error; |
|
640 TBBox_Rec user; |
|
641 |
|
642 #ifdef FT_CONFIG_OPTION_PIC |
|
643 FT_Outline_Funcs bbox_interface; |
|
644 Init_Class_bbox_interface(&bbox_interface); |
|
645 #endif |
|
646 |
|
647 user.bbox = bbox; |
|
648 |
|
649 error = FT_Outline_Decompose( outline, &bbox_interface, &user ); |
|
650 if ( error ) |
|
651 return error; |
|
652 |
|
653 *abbox = user.bbox; |
|
654 } |
|
655 else |
|
656 *abbox = bbox; |
|
657 |
|
658 return FT_Err_Ok; |
|
659 } |
|
660 |
|
661 |
|
662 /* END */ |
|