Add mingpt plugin which is mingpt example from tch repo plus amqp wrapper by me
authorunc0rr
Sat, 12 Jun 2021 20:58:07 +0200
changeset 15813 2528e3508bf4
parent 15812 efe4e3290870
child 15814 191e51179d1b
Add mingpt plugin which is mingpt example from tch repo plus amqp wrapper by me
tools/ubot-plugins/ubot-mingpt-plugin/Cargo.toml
tools/ubot-plugins/ubot-mingpt-plugin/src/main.rs
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/tools/ubot-plugins/ubot-mingpt-plugin/Cargo.toml	Sat Jun 12 20:58:07 2021 +0200
@@ -0,0 +1,15 @@
+[package]
+name = "ubot-mingpt-plugin"
+version = "0.1.0"
+authors = ["Andrey Korotaev <a.korotaev@hedgewars.org>"]
+edition = "2018"
+
+[dependencies]
+tch = "0.4"
+anyhow = "1.0"
+tokio-amqp = "1.0"
+lapin = "1.7"
+tokio = {version="1.6", features = ["full"]}
+rand = "0.8"
+futures = "0.3"
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/tools/ubot-plugins/ubot-mingpt-plugin/src/main.rs	Sat Jun 12 20:58:07 2021 +0200
@@ -0,0 +1,313 @@
+/* This example uses the tinyshakespeare dataset which can be downloaded at:
+   https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt
+
+   This is mostly a rust port of https://github.com/karpathy/minGPT
+*/
+
+extern crate tch;
+use anyhow::{bail, Result as AHResult};
+use std::{io, io::Write};
+use tch::data::TextData;
+use tch::nn::{ModuleT, OptimizerConfig};
+use tch::{nn, Device, IndexOp, Kind, Tensor};
+
+use futures::prelude::*;
+use lapin::{options::*, types::FieldTable, BasicProperties, Connection, ConnectionProperties};
+
+use tokio_amqp::*;
+
+const LEARNING_RATE: f64 = 0.0003;
+const BLOCK_SIZE: i64 = 128;
+const BATCH_SIZE: i64 = 64;
+const EPOCHS: i64 = 100;
+const SAMPLING_LEN: i64 = 512;
+
+#[derive(Debug, Copy, Clone)]
+struct Config {
+    vocab_size: i64,
+    n_embd: i64,
+    n_head: i64,
+    n_layer: i64,
+    block_size: i64,
+    attn_pdrop: f64,
+    resid_pdrop: f64,
+    embd_pdrop: f64,
+}
+
+// Weight decay only applies to the weight matrixes in the linear layers
+const NO_WEIGHT_DECAY_GROUP: usize = 0;
+const WEIGHT_DECAY_GROUP: usize = 1;
+
+// Custom linear layer so that different groups can be used for weight
+// and biases.
+#[derive(Debug)]
+struct Linear {
+    pub ws: Tensor,
+    pub bs: Tensor,
+}
+
+impl nn::Module for Linear {
+    fn forward(&self, xs: &Tensor) -> Tensor {
+        xs.matmul(&self.ws.tr()) + &self.bs
+    }
+}
+
+fn linear(vs: nn::Path, in_dim: i64, out_dim: i64) -> Linear {
+    let wd = vs.set_group(WEIGHT_DECAY_GROUP);
+    let no_wd = vs.set_group(NO_WEIGHT_DECAY_GROUP);
+    Linear {
+        ws: wd.randn("weight", &[out_dim, in_dim], 0.0, 0.02),
+        bs: no_wd.zeros("bias", &[out_dim]),
+    }
+}
+
+fn linear_no_bias(vs: nn::Path, in_dim: i64, out_dim: i64) -> Linear {
+    let wd = vs.set_group(WEIGHT_DECAY_GROUP);
+    let no_wd = vs.set_group(NO_WEIGHT_DECAY_GROUP);
+    Linear {
+        ws: wd.randn("weight", &[out_dim, in_dim], 0.0, 0.02),
+        bs: no_wd.zeros_no_train("bias", &[out_dim]),
+    }
+}
+
+fn causal_self_attention(p: &nn::Path, cfg: Config) -> impl ModuleT {
+    let key = linear(p / "key", cfg.n_embd, cfg.n_embd);
+    let query = linear(p / "query", cfg.n_embd, cfg.n_embd);
+    let value = linear(p / "value", cfg.n_embd, cfg.n_embd);
+    let proj = linear(p / "proj", cfg.n_embd, cfg.n_embd);
+    let mask_init =
+        Tensor::ones(&[cfg.block_size, cfg.block_size], (Kind::Float, p.device())).tril(0);
+    let mask_init = mask_init.view([1, 1, cfg.block_size, cfg.block_size]);
+    // let mask = p.var_copy("mask", &mask_init);
+    let mask = mask_init;
+    nn::func_t(move |xs, train| {
+        let (sz_b, sz_t, sz_c) = xs.size3().unwrap();
+        let sizes = [sz_b, sz_t, cfg.n_head, sz_c / cfg.n_head];
+        let k = xs.apply(&key).view(sizes).transpose(1, 2);
+        let q = xs.apply(&query).view(sizes).transpose(1, 2);
+        let v = xs.apply(&value).view(sizes).transpose(1, 2);
+        let att = q.matmul(&k.transpose(-2, -1)) * (1.0 / f64::sqrt(sizes[3] as f64));
+        let att = att.masked_fill(
+            &mask.i((.., .., ..sz_t, ..sz_t)).eq(0.),
+            std::f64::NEG_INFINITY,
+        );
+        let att = att.softmax(-1, Kind::Float).dropout(cfg.attn_pdrop, train);
+        let ys = att
+            .matmul(&v)
+            .transpose(1, 2)
+            .contiguous()
+            .view([sz_b, sz_t, sz_c]);
+        ys.apply(&proj).dropout(cfg.resid_pdrop, train)
+    })
+}
+
+fn block(p: &nn::Path, cfg: Config) -> impl ModuleT {
+    let ln1 = nn::layer_norm(p / "ln1", vec![cfg.n_embd], Default::default());
+    let ln2 = nn::layer_norm(p / "ln2", vec![cfg.n_embd], Default::default());
+    let attn = causal_self_attention(p, cfg);
+    let lin1 = linear(p / "lin1", cfg.n_embd, 4 * cfg.n_embd);
+    let lin2 = linear(p / "lin2", 4 * cfg.n_embd, cfg.n_embd);
+    nn::func_t(move |xs, train| {
+        let xs = xs + xs.apply(&ln1).apply_t(&attn, train);
+        let ys = xs
+            .apply(&ln2)
+            .apply(&lin1)
+            .gelu()
+            .apply(&lin2)
+            .dropout(cfg.resid_pdrop, train);
+        xs + ys
+    })
+}
+
+fn gpt(p: &nn::Path, cfg: Config) -> impl ModuleT {
+    let p = &p.set_group(NO_WEIGHT_DECAY_GROUP);
+    let tok_emb = nn::embedding(
+        p / "tok_emb",
+        cfg.vocab_size,
+        cfg.n_embd,
+        Default::default(),
+    );
+    let pos_emb = p.zeros("pos_emb", &[1, cfg.block_size, cfg.n_embd]);
+    let ln_f = nn::layer_norm(p / "ln_f", vec![cfg.n_embd], Default::default());
+    let head = linear_no_bias(p / "head", cfg.n_embd, cfg.vocab_size);
+    let mut blocks = nn::seq_t();
+    for block_idx in 0..cfg.n_layer {
+        blocks = blocks.add(block(&(p / block_idx), cfg));
+    }
+    nn::func_t(move |xs, train| {
+        let (_sz_b, sz_t) = xs.size2().unwrap();
+        let tok_emb = xs.apply(&tok_emb);
+        let pos_emb = pos_emb.i((.., ..sz_t, ..));
+        (tok_emb + pos_emb)
+            .dropout(cfg.embd_pdrop, train)
+            .apply_t(&blocks, train)
+            .apply(&ln_f)
+            .apply(&head)
+    })
+}
+
+/// Generates some sample string using the GPT model.
+fn sample(data: &TextData, gpt: &impl ModuleT, input: Tensor) -> String {
+    let mut input = input;
+    let mut result = String::new();
+    for _index in 0..SAMPLING_LEN {
+        let logits = input.apply_t(gpt, false).i((0, -1, ..));
+        let sampled_y = logits.softmax(-1, Kind::Float).multinomial(1, true);
+        let last_label = i64::from(&sampled_y);
+        result.push(data.label_to_char(last_label));
+        input = Tensor::cat(&[input, sampled_y.view([1, 1])], 1).narrow(1, 1, BLOCK_SIZE);
+    }
+    result
+}
+
+#[tokio::main]
+async fn main() -> AHResult<()> {
+    let device = Device::cuda_if_available();
+    let mut vs = nn::VarStore::new(device);
+    let data = TextData::new("10.log")?;
+    let labels = data.labels();
+    println!("Dataset loaded, {} labels.", labels);
+    let cfg = Config {
+        vocab_size: labels,
+        n_embd: 384, // was 512
+        n_head: 8,
+        n_layer: 8,
+        block_size: BLOCK_SIZE,
+        attn_pdrop: 0.1,
+        resid_pdrop: 0.1,
+        embd_pdrop: 0.1,
+    };
+    let gpt = gpt(&(&vs.root() / "gpt"), cfg);
+    let args: Vec<_> = std::env::args().collect();
+    if args.len() < 2 {
+        bail!("usage: main (train|predict weights.ot seqstart)")
+    }
+    match args[1].as_str() {
+        "train" => {
+            let mut opt = nn::AdamW::default().build(&vs, LEARNING_RATE)?;
+            opt.set_weight_decay_group(NO_WEIGHT_DECAY_GROUP, 0.0);
+            opt.set_weight_decay_group(WEIGHT_DECAY_GROUP, 0.1);
+            let mut idx = 0;
+            vs.load("384.ot")?;
+            for epoch in 1..(1 + EPOCHS) {
+                let mut sum_loss = 0.;
+                let mut cnt_loss = 0.;
+                for batch in data.iter_shuffle(BLOCK_SIZE + 1, BATCH_SIZE) {
+                    let xs = batch
+                        .narrow(1, 0, BLOCK_SIZE)
+                        .to_kind(Kind::Int64)
+                        .to_device(device);
+                    let ys = batch
+                        .narrow(1, 1, BLOCK_SIZE)
+                        .to_kind(Kind::Int64)
+                        .to_device(device);
+                    let logits = xs.apply_t(&gpt, true);
+                    let loss = logits
+                        .view([BATCH_SIZE * BLOCK_SIZE, labels])
+                        .cross_entropy_for_logits(&ys.view([BATCH_SIZE * BLOCK_SIZE]));
+                    opt.backward_step_clip(&loss, 0.5);
+                    sum_loss += f64::from(loss);
+                    cnt_loss += 1.0;
+                    idx += 1;
+                    if idx % 10 == 0 {
+                        print!("{}", '.');
+                        io::stdout().flush()?;
+                    }
+                    if idx % 1000 == 0 {
+                        println!("Epoch: {}   loss: {:5.3}", epoch, sum_loss / cnt_loss);
+                        let input = Tensor::zeros(&[1, BLOCK_SIZE], (Kind::Int64, device));
+                        println!("Sample: {}", sample(&data, &gpt, input));
+                        if let Err(err) = vs.save(format!("gpt{:08}.ot", idx)) {
+                            println!("error while saving {}", err);
+                        }
+                        sum_loss = 0.;
+                        cnt_loss = 0.;
+                    }
+                }
+            }
+        }
+        "predict" => {
+            let amqp_url = std::env::var("AMQP_URL").expect("expected AMQP_URL env variabe");
+            let conn = Connection::connect(&amqp_url, ConnectionProperties::default().with_tokio())
+                .await?;
+
+            let pub_channel = conn.create_channel().await?;
+            let sub_channel = conn.create_channel().await?;
+
+            let queue = sub_channel
+                .queue_declare(
+                    &"",
+                    QueueDeclareOptions {
+                        exclusive: true,
+                        auto_delete: true,
+                        ..QueueDeclareOptions::default()
+                    },
+                    FieldTable::default(),
+                )
+                .await?;
+
+            sub_channel
+                .queue_bind(
+                    queue.name().as_str(),
+                    "irc",
+                    "cmd.say.hedgewars",
+                    QueueBindOptions::default(),
+                    FieldTable::default(),
+                )
+                .await?;
+
+            let mut subscriber = sub_channel
+                .basic_consume(
+                    queue.name().as_str(),
+                    &"",
+                    BasicConsumeOptions::default(),
+                    FieldTable::default(),
+                )
+                .await?;
+
+            vs.load(args[2].as_str())?;
+
+            while let Some(amqp_message) = subscriber.next().await {
+                let (_, delivery) = amqp_message.expect("error in consumer");
+                delivery.ack(BasicAckOptions::default()).await?;
+
+                let chat_message = String::from_utf8(delivery.data)?;
+                if let Some((_who, seed)) = chat_message.split_once('\n') {
+                    let input_sample = &format!("\n{}", seed);
+                    let input = Tensor::zeros(&[1, BLOCK_SIZE], (Kind::Int64, device));
+                    for (idx, c) in input_sample.chars().rev().enumerate() {
+                        let idx = idx as i64;
+                        if idx >= BLOCK_SIZE {
+                            break;
+                        }
+                        let _filled = input
+                            .i((0, BLOCK_SIZE - 1 - idx))
+                            .fill_(data.char_to_label(c).unwrap_or(0) as i64);
+                    }
+
+                    let proceeded_message = &sample(&data, &gpt, input);
+                    let final_message = proceeded_message
+                        .split_once('\n')
+                        .map(|(m, _)| m)
+                        .unwrap_or(proceeded_message);
+                    let final_message = &format!("{}{}", seed, final_message);
+
+                    println!("{} --> {}", seed, proceeded_message);
+
+                    pub_channel
+                        .basic_publish(
+                            "irc",
+                            "say.hedgewars",
+                            BasicPublishOptions::default(),
+                            final_message.as_bytes().to_vec(),
+                            BasicProperties::default(),
+                        )
+                        .await?;
+                }
+            }
+        }
+        _ => bail!("usage: main (train|predict weights.ot)"),
+    };
+
+    Ok(())
+}