Allow to see rooms of incompatible versions in the lobby
For the new clients the room version is shown in a separate column.
There is also a hack for previous versions clients: the room vesion
specifier is prepended to the room names for rooms of incompatible versions,
and the server shows 'incompatible version' error if the client tries to join them.
use std::{cmp, ops, ops::Shl};
const POSITIVE_MASK: u64 = 0x0000_0000_0000_0000;
const NEGATIVE_MASK: u64 = 0xFFFF_FFFF_FFFF_FFFF;
#[inline]
fn bool_mask(is_negative: bool) -> u64 {
if is_negative {
NEGATIVE_MASK
} else {
POSITIVE_MASK
}
}
#[derive(Clone, Debug, Copy)]
pub struct FPNum {
sign_mask: u64,
value: u64,
}
impl FPNum {
#[inline]
pub fn new(numerator: i32, denominator: u32) -> Self {
FPNum::from(numerator) / denominator
}
#[inline]
pub fn signum(&self) -> i8 {
(1u64 ^ self.sign_mask).wrapping_sub(self.sign_mask) as i8
}
#[inline]
pub const fn is_negative(&self) -> bool {
self.sign_mask != POSITIVE_MASK
}
#[inline]
pub const fn is_positive(&self) -> bool {
self.sign_mask == POSITIVE_MASK
}
#[inline]
pub const fn is_zero(&self) -> bool {
self.value == 0
}
#[inline]
pub const fn abs(&self) -> Self {
Self {
sign_mask: POSITIVE_MASK,
value: self.value,
}
}
#[inline]
pub fn round(&self) -> i32 {
((self.value >> 32) as i32 ^ self.sign_mask as i32).wrapping_sub(self.sign_mask as i32)
}
#[inline]
pub const fn abs_round(&self) -> u32 {
(self.value >> 32) as u32
}
#[inline]
pub fn sqr(&self) -> Self {
Self {
sign_mask: 0,
value: ((self.value as u128).pow(2) >> 32) as u64,
}
}
#[inline]
pub fn sqrt(&self) -> Self {
debug_assert!(self.is_positive());
Self {
sign_mask: POSITIVE_MASK,
value: integral_sqrt(self.value) << 16,
}
}
#[inline]
pub fn with_sign(&self, is_negative: bool) -> FPNum {
FPNum {
sign_mask: bool_mask(is_negative),
..*self
}
}
#[inline]
pub const fn with_sign_as(self, other: FPNum) -> FPNum {
FPNum {
sign_mask: other.sign_mask,
..self
}
}
#[inline]
pub const fn point(self) -> FPPoint {
FPPoint::new(self, self)
}
#[inline]
const fn temp_i128(self) -> i128 {
((self.value ^ self.sign_mask) as i128).wrapping_sub(self.sign_mask as i128)
}
}
impl From<i32> for FPNum {
#[inline]
fn from(n: i32) -> Self {
FPNum {
sign_mask: bool_mask(n < 0),
value: (n.abs() as u64) << 32,
}
}
}
impl From<u32> for FPNum {
#[inline]
fn from(n: u32) -> Self {
Self {
sign_mask: POSITIVE_MASK,
value: (n as u64) << 32,
}
}
}
impl From<FPNum> for f64 {
#[inline]
fn from(n: FPNum) -> Self {
if n.is_negative() {
n.value as f64 / -0x1_0000_0000i64 as f64
} else {
n.value as f64 / 0x1_0000_0000i64 as f64
}
}
}
impl PartialEq for FPNum {
#[inline]
fn eq(&self, other: &Self) -> bool {
self.value == other.value && (self.sign_mask == other.sign_mask || self.value == 0)
}
}
impl Eq for FPNum {}
impl PartialOrd for FPNum {
#[inline]
fn partial_cmp(&self, rhs: &Self) -> std::option::Option<std::cmp::Ordering> {
Some(self.cmp(rhs))
}
}
impl Ord for FPNum {
#[inline]
fn cmp(&self, rhs: &Self) -> cmp::Ordering {
self.temp_i128().cmp(&(rhs.temp_i128()))
}
}
impl ops::Add for FPNum {
type Output = Self;
#[inline]
fn add(self, rhs: Self) -> Self {
let tmp = self.temp_i128() + rhs.temp_i128();
let mask = bool_mask(tmp < 0);
Self {
sign_mask: mask,
value: ((tmp as u64) ^ mask).wrapping_sub(mask),
}
}
}
impl ops::Sub for FPNum {
type Output = Self;
#[inline]
fn sub(self, mut rhs: Self) -> Self {
rhs.sign_mask = !rhs.sign_mask;
self + rhs
}
}
impl ops::Neg for FPNum {
type Output = Self;
#[inline]
fn neg(self) -> Self {
Self {
sign_mask: !self.sign_mask,
value: self.value,
}
}
}
impl ops::Mul for FPNum {
type Output = Self;
#[inline]
fn mul(self, rhs: Self) -> Self {
Self {
sign_mask: self.sign_mask ^ rhs.sign_mask,
value: ((self.value as u128 * rhs.value as u128) >> 32) as u64,
}
}
}
impl ops::Mul<i32> for FPNum {
type Output = Self;
#[inline]
fn mul(self, rhs: i32) -> Self {
Self {
sign_mask: self.sign_mask ^ bool_mask(rhs < 0),
value: self.value * rhs.abs() as u64,
}
}
}
impl ops::Div for FPNum {
type Output = Self;
#[inline]
fn div(self, rhs: Self) -> Self {
Self {
sign_mask: self.sign_mask ^ rhs.sign_mask,
value: (((self.value as u128) << 32) / rhs.value as u128) as u64,
}
}
}
impl ops::Div<i32> for FPNum {
type Output = Self;
#[inline]
fn div(self, rhs: i32) -> Self {
Self {
sign_mask: self.sign_mask ^ bool_mask(rhs < 0),
value: self.value / rhs.abs() as u64,
}
}
}
impl ops::Div<u32> for FPNum {
type Output = Self;
#[inline]
fn div(self, rhs: u32) -> Self {
Self {
sign_mask: self.sign_mask,
value: self.value / rhs as u64,
}
}
}
#[macro_export]
macro_rules! fp {
($n: literal / $d: tt) => {
FPNum::new($n, $d)
};
($n: literal) => {
FPNum::from($n)
};
}
const LINEARIZE_TRESHOLD: u64 = 0x1_0000;
#[derive(Clone, Copy, Debug)]
pub struct FPPoint {
x_sign_mask: u32,
y_sign_mask: u32,
x_value: u64,
y_value: u64,
}
impl FPPoint {
#[inline]
pub const fn new(x: FPNum, y: FPNum) -> Self {
Self {
x_sign_mask: x.sign_mask as u32,
y_sign_mask: y.sign_mask as u32,
x_value: x.value,
y_value: y.value,
}
}
#[inline]
pub fn zero() -> FPPoint {
FPPoint::new(fp!(0), fp!(0))
}
#[inline]
pub fn unit_x() -> FPPoint {
FPPoint::new(fp!(1), fp!(0))
}
#[inline]
pub fn unit_y() -> FPPoint {
FPPoint::new(fp!(0), fp!(1))
}
#[inline]
pub const fn x(&self) -> FPNum {
FPNum {
sign_mask: self.x_sign_mask as i32 as u64,
value: self.x_value,
}
}
#[inline]
pub const fn y(&self) -> FPNum {
FPNum {
sign_mask: self.y_sign_mask as i32 as u64,
value: self.y_value,
}
}
#[inline]
pub fn is_zero(&self) -> bool {
self.x().is_zero() && self.y().is_zero()
}
#[inline]
pub fn max_norm(&self) -> FPNum {
std::cmp::max(self.x().abs(), self.y().abs())
}
#[inline]
pub fn sqr_distance(&self) -> FPNum {
self.x().sqr() + self.y().sqr()
}
#[inline]
pub fn distance(&self) -> FPNum {
let r = self.x_value | self.y_value;
if r < LINEARIZE_TRESHOLD {
FPNum::from(r as u32)
} else {
let sqr: u128 = (self.x_value as u128).pow(2) + (self.y_value as u128).pow(2);
FPNum {
sign_mask: POSITIVE_MASK,
value: integral_sqrt_ext(sqr),
}
}
}
#[inline]
pub fn is_in_range(&self, radius: FPNum) -> bool {
self.max_norm() < radius && self.sqr_distance() < radius.sqr()
}
#[inline]
pub fn dot(&self, other: &FPPoint) -> FPNum {
self.x() * other.x() + self.y() * other.y()
}
}
impl PartialEq for FPPoint {
#[inline]
fn eq(&self, other: &Self) -> bool {
self.x() == other.x() && self.y() == other.y()
}
}
impl Eq for FPPoint {}
impl ops::Neg for FPPoint {
type Output = Self;
#[inline]
fn neg(self) -> Self {
Self::new(-self.x(), -self.y())
}
}
macro_rules! bin_op_impl {
($op: ty, $name: tt) => {
impl $op for FPPoint {
type Output = Self;
#[inline]
fn $name(self, rhs: Self) -> Self {
Self::new(self.x().$name(rhs.x()), self.y().$name(rhs.y()))
}
}
};
}
macro_rules! right_scalar_bin_op_impl {
($($op: tt)::+, $name: tt) => {
impl $($op)::+<FPNum> for FPPoint {
type Output = Self;
#[inline]
fn $name(self, rhs: FPNum) -> Self {
Self::new(self.x().$name(rhs),
self.y().$name(rhs))
}
}
};
($($op: tt)::+<$arg: tt>, $name: tt) => {
impl $($op)::+<$arg> for FPPoint {
type Output = Self;
#[inline]
fn $name(self, rhs: $arg) -> Self {
Self::new(self.x().$name(rhs),
self.y().$name(rhs))
}
}
}
}
macro_rules! left_scalar_bin_op_impl {
($($op: tt)::+, $name: tt) => {
impl $($op)::+<FPPoint> for FPNum {
type Output = FPPoint;
#[inline]
fn $name(self, rhs: FPPoint) -> Self::Output {
Self::Output::new(self.$name(rhs.x()),
self.$name(rhs.y()))
}
}
}
}
bin_op_impl!(ops::Add, add);
bin_op_impl!(ops::Sub, sub);
bin_op_impl!(ops::Mul, mul);
bin_op_impl!(ops::Div, div);
right_scalar_bin_op_impl!(ops::Add, add);
right_scalar_bin_op_impl!(ops::Mul, mul);
right_scalar_bin_op_impl!(ops::Sub, sub);
right_scalar_bin_op_impl!(ops::Div, div);
right_scalar_bin_op_impl!(ops::Div<u32>, div);
left_scalar_bin_op_impl!(ops::Mul, mul);
macro_rules! bin_assign_op_impl {
($typ: tt, $($op: tt)::+, $name: tt, $delegate: tt) => {
bin_assign_op_impl!($typ, $($op)::+<$typ>, $name, $delegate);
};
($typ: tt, $($op: tt)::+<$arg: tt>, $name: tt, $delegate: tt) => {
impl $($op)::+<$arg> for $typ {
#[inline]
fn $name(&mut self, rhs: $arg) {
*self = *self $delegate rhs;
}
}
}
}
bin_assign_op_impl!(FPNum, ops::AddAssign, add_assign, +);
bin_assign_op_impl!(FPNum, ops::SubAssign, sub_assign, -);
bin_assign_op_impl!(FPNum, ops::MulAssign, mul_assign, *);
bin_assign_op_impl!(FPNum, ops::DivAssign, div_assign, /);
bin_assign_op_impl!(FPNum, ops::MulAssign<i32>, mul_assign, *);
bin_assign_op_impl!(FPNum, ops::DivAssign<i32>, div_assign, /);
bin_assign_op_impl!(FPNum, ops::DivAssign<u32>, div_assign, /);
bin_assign_op_impl!(FPPoint, ops::AddAssign, add_assign, +);
bin_assign_op_impl!(FPPoint, ops::SubAssign, sub_assign, -);
bin_assign_op_impl!(FPPoint, ops::MulAssign, mul_assign, *);
bin_assign_op_impl!(FPPoint, ops::DivAssign, div_assign, /);
bin_assign_op_impl!(FPPoint, ops::AddAssign<FPNum>, add_assign, +);
bin_assign_op_impl!(FPPoint, ops::SubAssign<FPNum>, sub_assign, -);
bin_assign_op_impl!(FPPoint, ops::MulAssign<FPNum>, mul_assign, *);
bin_assign_op_impl!(FPPoint, ops::DivAssign<FPNum>, div_assign, /);
pub fn integral_sqrt(value: u64) -> u64 {
let mut digits = (64u32 - 1).saturating_sub(value.leading_zeros()) & 0xFE;
let mut result = if value == 0 { 0u64 } else { 1u64 };
while digits != 0 {
result <<= 1;
if (result + 1).pow(2) <= value >> (digits - 2) {
result += 1;
}
digits -= 2;
}
result
}
pub fn integral_sqrt_ext(value: u128) -> u64 {
let mut digits = (128u32 - 1).saturating_sub(value.leading_zeros()) & 0xFE;
let mut result = if value == 0 { 0u64 } else { 1u64 };
while digits != 0 {
result <<= 1;
if ((result + 1) as u128).pow(2) <= value >> (digits - 2) {
result += 1;
}
digits -= 2;
}
result
}
#[inline]
pub fn distance<T>(x: T, y: T) -> FPNum
where
T: Into<i64> + std::fmt::Debug,
{
let sqr: u128 = (x.into().pow(2) as u128).shl(64) + (y.into().pow(2) as u128).shl(64);
FPNum {
sign_mask: POSITIVE_MASK,
value: integral_sqrt_ext(sqr),
}
}
/* TODO:
AngleSin
AngleCos
*/
#[test]
fn basics() {
let n = fp!(15 / 2);
assert!(n.is_positive());
assert!(!n.is_negative());
assert!(!(-n).is_positive());
assert!((-n).is_negative());
assert_eq!(-(-n), n);
assert_eq!((-n).abs(), n);
assert_eq!(-n, fp!(-15 / 2));
assert_eq!(n.round(), 7);
assert_eq!((-n).round(), -7);
assert_eq!(f64::from(fp!(5/2)), 2.5f64);
assert_eq!(integral_sqrt_ext(0xFFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF), 0xFFFF_FFFF_FFFF_FFFF);
}
#[test]
fn zero() {
let z = fp!(0);
let n = fp!(15 / 2);
assert!(z.is_zero());
assert!(z.is_positive());
assert!((-z).is_negative());
assert_eq!(n - n, z);
assert_eq!(-n + n, z);
assert_eq!(n.with_sign_as(-n), -n);
}
#[test]
fn ord() {
let z = fp!(0);
let n1_5 = fp!(3 / 2);
let n2_25 = fp!(9 / 4);
assert!(!(z > z));
assert!(!(z < z));
assert!(n2_25 > n1_5);
assert!(-n2_25 < n1_5);
assert!(-n2_25 < -n1_5);
assert_eq!(n1_5.signum(), 1);
assert_eq!((-n1_5).signum(), -1);
}
#[test]
fn arith() {
let n1_5 = fp!(3 / 2);
let n2_25 = fp!(9 / 4);
let n_0_15 = fp!(-15 / 100);
assert_eq!(n1_5 + n1_5, fp!(3));
assert_eq!(-n1_5 - n1_5, fp!(-3));
assert_eq!(n1_5 - n1_5, fp!(0));
assert_eq!(n1_5 * n1_5, n2_25);
assert_eq!(-n1_5 * -n1_5, n2_25);
assert_eq!(n1_5 * -n1_5, -n2_25);
assert_eq!(-n1_5 * n1_5, -n2_25);
assert_eq!(-n2_25 / -n1_5, n1_5);
assert_eq!(n1_5 / -10, n_0_15);
assert_eq!(n1_5.sqr(), n2_25);
assert_eq!((-n1_5).sqr(), n2_25);
assert_eq!(n2_25.sqrt(), n1_5);
assert_eq!((n1_5 * n1_5 * n1_5.sqr()).sqrt(), n2_25);
let mut m = fp!(1);
m += n1_5;
assert_eq!(m, fp!(5 / 2));
}
#[test]
fn test_distance_high_values() {
assert_eq!(distance(1_000_000i32, 0), fp!(1_000_000));
assert_eq!(
FPPoint::new(fp!(1_000_000), fp!(0)).distance(),
fp!(1_000_000)
);
}
#[test]
fn point() {
let z = FPPoint::zero();
let n = fp!(16 / 9);
let p = FPPoint::new(fp!(1), fp!(-2));
assert_eq!(p.sqr_distance(), fp!(5));
assert_eq!(p + -p, FPPoint::zero());
assert_eq!(p * z, z);
assert_eq!(p.dot(&z), fp!(0));
assert_eq!(n * p, p * n);
assert_eq!(distance(4, 3), fp!(5));
assert_eq!(p * fp!(-3), FPPoint::new(fp!(-3), fp!(6)));
assert_eq!(p.max_norm(), fp!(2));
}