Make hedgewars frontend not change scheme/weps to Default if script cfg doesn't match a known scheme. That is, will leave on whatever is selected. Also set a bunch of schemes where we don't care what the scheme/weps are to *
module Main where
import qualified Data.ByteString.Char8 as B
import qualified Data.ByteString as BW
import qualified Data.ByteString.Lazy as BL
import qualified Codec.Binary.Base64 as Base64
import Data.Word
import Data.Int
import Data.Binary
import Data.Binary.Put
import Data.Bits
import Control.Monad
import qualified Codec.Compression.Zlib as Z
data LineType = Solid | Erasing
deriving Eq
data Chunk = SpecialPoints [(Int16, Int16)]
| Line LineType Word8 [(Int16, Int16)]
transform :: ((Int16, Int16) -> (Int16, Int16)) -> [Chunk] -> [Chunk]
transform f = map tf
where
tf (SpecialPoints p) = SpecialPoints $ map f p
tf (Line t r p) = Line t r $ map f p
scale f = transform (\(a, b) -> (a * f, b * f))
mirror = transform (\(a, b) -> (4095 - a, b))
flip' = transform (\(a, b) -> (a, 2047 - b))
translate dx dy = transform (\(a, b) -> (a + dx, b + dy))
instance Binary Chunk where
put (SpecialPoints p) = do
forM_ p $ \(x, y) -> do
put x
put y
putWord8 0
put (Line lt r ((x1, y1):ps)) = do
let flags = r .|. (if lt == Solid then 0 else (1 `shift` 6))
put x1
put y1
putWord8 $ flags .|. (1 `shift` 7)
forM_ ps $ \(x, y) -> do
put x
put y
putWord8 flags
get = undefined
compressWithLength :: BL.ByteString -> BL.ByteString
compressWithLength b = BL.drop 8 . encode . runPut $ do
put $ ((fromIntegral $ BL.length b)::Word32)
mapM_ putWord8 $ BW.unpack $ BL.toStrict $ Z.compress b
mapString :: B.ByteString
mapString = B.pack . Base64.encode . BW.unpack . BL.toStrict . compressWithLength . BL.drop 8 . encode $ drawnMap04
main = B.writeFile "out.hwmap" mapString
drawnMap01 = translate (-3) (-3) $ sp ++ mirror sp ++ base ++ mirror base
where
sp = translate 128 128 . scale 256 $ [SpecialPoints [
(6, 0)
, (1, 4)
, (4, 7)
, (7, 5)
]]
base = scale 256 $ [
l [(5, 0), (5, 1)]
, l [(7, 0), (7, 1)]
, l [(8, 1), (6, 1), (6, 4)]
, l [(8, 1), (8, 6), (6, 6), (6, 7), (8, 7)]
, l [(7, 2), (7, 5), (5, 5)]
, l [(5, 3), (5, 8)]
, l [(6, 2), (4, 2)]
, l [(1, 1), (4, 1), (4, 7)]
, l [(3, 5), (3, 7), (2, 7), (2, 8)]
, l [(2, 1), (2, 2)]
, l [(0, 2), (1, 2), (1, 3), (3, 3), (3, 2)]
, l [(0, 5), (1, 5)]
, l [(1, 4), (4, 4)]
, l [(2, 4), (2, 6), (1, 6), (1, 7)]
, l [(0, 8), (8, 8)]
]
l = Line Solid 0
drawnMap02 = translate (-3) (-3) $ sp ++ mirror sp ++ base ++ mirror base
where
sp = translate 128 128 . scale 256 $ [SpecialPoints [
(7, 0)
, (7, 7)
]]
base = scale 256 $ [
l [(8, 0), (8, 1), (1, 1)]
, l [(2, 1), (2, 2), (3, 2), (3, 3), (4, 3), (4, 4), (5, 4), (5, 5), (6, 5), (6, 6), (7, 6), (7, 7), (7, 1)]
, l [(0, 2), (1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (3, 5), (4, 5), (4, 6), (5, 6), (5, 7), (6, 7), (6, 8), (8, 8), (8, 2)]
]
l = Line Solid 0
drawnMap03 = translate (-3) (-3) $ sp ++ mirror sp ++ base ++ mirror base
where
sp = translate 128 128 . scale 256 $ [SpecialPoints [
(3, 1)
, (2, 4)
]]
base = scale 256 $ [
l [(6, 0), (6, 1)]
, l [(1, 1), (5, 1)]
, l [(4, 1), (4, 2), (3, 2)]
, l [(0, 2), (1, 2), (1, 4)]
, l [(0, 4), (3, 4), (3, 3), (5, 3), (5, 2), (7, 2)]
, l [(7, 1), (7, 3)]
, l [(8, 0), (8, 4), (4, 4), (4, 5), (1, 5), (1, 6)]
, l [(6, 3), (6, 4)]
, l [(0, 8), (8, 8)]
, l [(1, 7), (1, 8)]
, l [(2, 7), (2, 5)]
, l [(3, 6), (3, 5)]
, l [(3, 7), (3, 8)]
, l [(4, 6), (4, 8)]
, l [(5, 4), (5, 6)]
, l [(5, 7), (5, 8)]
, l [(6, 5), (6, 8)]
, l [(7, 4), (7, 6)]
, l [(7, 7), (7, 8)]
, l [(8, 5), (8, 8)]
]
l = Line Solid 0
drawnMap04 = translate (-3) (-3) $ sp ++ fm sp ++ base ++ fm base
where
sp = translate 128 128 . scale 256 $ [SpecialPoints [
(7, 7)
-- , (6, 6)
, (3, 3)
, (0, 6)
, (3, 6)
]]
base = scale 256 $ [
l [(1, 2), (3, 2), (3, 1), (4, 1), (4, 2), (6, 2), (6, 4), (7, 4), (7, 5), (8, 5), (8, 8)]
, l [(0, 0), (16, 0)]
, l [(1, 5), (3, 5), (3, 7), (1, 7), (1, 5)]
, l [(4, 5), (6, 5), (6, 7), (4, 7), (4, 5)]
, l [(0, 4), (2, 4), (2, 3), (5, 3), (5, 4)]
, l [(6, 1), (6, 2), (7, 2)]
, l [(7, 1), (8, 1)]
, l [(7, 3), (8, 3)]
, l [(3, 4), (4, 4)]
, l [(7, 6), (7, 8)]
, l [(2, 0), (2, 1)]
, l [(5, 0), (5, 1)]
]
l = Line Solid 0
fm = flip' . mirror