start a physics engine to try out this data oriented thing everyone seems to be talking about
use std::cmp;
use std::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Sub, SubAssign};
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
pub struct Point {
pub x: i32,
pub y: i32,
}
impl Point {
#[inline]
pub fn new(x: i32, y: i32) -> Self {
Self { x, y }
}
#[inline]
pub fn zero() -> Self {
Self::new(0, 0)
}
#[inline]
pub fn signum(self) -> Self {
Self::new(self.x.signum(), self.y.signum())
}
#[inline]
pub fn abs(self) -> Self {
Self::new(self.x.abs(), self.y.abs())
}
#[inline]
pub fn dot(self, other: Point) -> i32 {
self.x * other.x + self.y * other.y
}
#[inline]
pub fn max_norm(self) -> i32 {
std::cmp::max(self.x.abs(), self.y.abs())
}
#[inline]
pub fn transform(self, matrix: &[i32; 4]) -> Self {
Point::new(matrix[0] * self.x + matrix[1] * self.y,
matrix[2] * self.x + matrix[3] * self.y)
}
}
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
pub struct Size {
pub width: usize,
pub height: usize,
}
impl Size {
#[inline]
pub fn new(width: usize, height: usize) -> Self {
Size { width, height }
}
#[inline]
pub fn square(size: usize) -> Self {
Size { width: size, height: size }
}
#[inline]
pub fn area(&self) -> usize {
self.width * self.height
}
#[inline]
pub fn linear_index(&self, x: usize, y: usize) -> usize {
y * self.width + x
}
#[inline]
pub fn is_power_of_two(&self) -> bool {
self.width.is_power_of_two() && self.height.is_power_of_two()
}
#[inline]
pub fn next_power_of_two(&self) -> Self {
Self {
width: self.width.next_power_of_two(),
height: self.height.next_power_of_two()
}
}
#[inline]
pub fn to_mask(&self) -> SizeMask {
SizeMask::new(*self)
}
pub fn to_grid_index(&self) -> GridIndex {
GridIndex::new(*self)
}
}
pub struct SizeMask{ size: Size }
impl SizeMask {
#[inline]
pub fn new(size: Size) -> Self {
assert!(size.is_power_of_two());
let size = Size {
width: !(size.width - 1),
height: !(size.height - 1)
};
Self { size }
}
#[inline]
pub fn contains_x<T: Into<usize>>(&self, x: T) -> bool {
(self.size.width & x.into()) == 0
}
#[inline]
pub fn contains_y<T: Into<usize>>(&self, y: T) -> bool {
(self.size.height & y.into()) == 0
}
#[inline]
pub fn contains(&self, point: Point) -> bool {
self.contains_x(point.x as usize) && self.contains_y(point.y as usize)
}
}
pub struct GridIndex{ shift: Point }
impl GridIndex {
pub fn new(size: Size) -> Self {
assert!(size.is_power_of_two());
let shift = Point::new(size.width.trailing_zeros() as i32,
size.height.trailing_zeros() as i32);
Self { shift }
}
pub fn map(&self, position: Point) -> Point {
Point::new(position.x >> self.shift.x,
position.y >> self.shift.y)
}
}
macro_rules! bin_op_impl {
($op: ty, $name: tt) => {
impl $op for Point {
type Output = Self;
#[inline]
fn $name(self, rhs: Self) -> Self::Output {
Self::new(self.x.$name(rhs.x), self.y.$name(rhs.y))
}
}
};
}
macro_rules! bin_assign_op_impl {
($op: ty, $name: tt) => {
impl $op for Point {
#[inline]
fn $name(&mut self, rhs: Self) {
self.x.$name(rhs.x);
self.y.$name(rhs.y);
}
}
};
}
bin_op_impl!(Add, add);
bin_op_impl!(Sub, sub);
bin_op_impl!(Mul, mul);
bin_op_impl!(Div, div);
bin_assign_op_impl!(AddAssign, add_assign);
bin_assign_op_impl!(SubAssign, sub_assign);
bin_assign_op_impl!(MulAssign, mul_assign);
bin_assign_op_impl!(DivAssign, div_assign);
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
pub struct Rect {
pub x: i32,
pub y: i32,
pub width: u32,
pub height: u32,
}
impl Rect {
#[inline]
pub fn new(x: i32, y: i32, width: u32, height: u32) -> Self {
Self { x, y, width, height }
}
#[inline]
pub fn size(&self) -> Size {
Size::new(self.width as usize, self.height as usize)
}
#[inline]
pub fn area(&self) -> usize {
self.size().area()
}
}
pub struct LinePoints {
accumulator: Point,
direction: Point,
sign: Point,
current: Point,
total_steps: i32,
step: i32,
}
impl LinePoints {
pub fn new(from: Point, to: Point) -> Self {
let dir = to - from;
Self {
accumulator: Point::zero(),
direction: dir.abs(),
sign: dir.signum(),
current: from,
total_steps: dir.max_norm(),
step: 0,
}
}
}
impl Iterator for LinePoints {
type Item = Point;
fn next(&mut self) -> Option<Self::Item> {
if self.step <= self.total_steps {
self.accumulator += self.direction;
if self.accumulator.x > self.total_steps {
self.accumulator.x -= self.total_steps;
self.current.x += self.sign.x;
}
if self.accumulator.y > self.total_steps {
self.accumulator.y -= self.total_steps;
self.current.y += self.sign.y;
}
self.step += 1;
Some(self.current)
} else {
None
}
}
}
pub struct ArcPoints {
point: Point,
step: i32,
}
impl ArcPoints {
pub fn new(radius: i32) -> Self {
Self {
point: Point::new(0, radius),
step: 3 - 2 * radius,
}
}
}
impl Iterator for ArcPoints {
type Item = Point;
fn next(&mut self) -> Option<Self::Item> {
if self.point.x < self.point.y {
let result = self.point;
if self.step < 0 {
self.step += self.point.x * 4 + 6;
} else {
self.step += (self.point.x - self.point.y) * 4 + 10;
self.point.y -= 1;
}
self.point.x += 1;
Some(result)
} else if self.point.x == self.point.y {
self.point.x += 1;
Some(self.point)
} else {
None
}
}
}
pub struct EquidistantPoints {
vector: Point,
iteration: u8,
}
impl EquidistantPoints {
pub fn new(vector: Point) -> Self {
Self {
vector,
iteration: if vector.x == vector.y { 4 } else { 8 },
}
}
}
impl Iterator for EquidistantPoints {
type Item = Point;
fn next(&mut self) -> Option<Self::Item> {
if self.iteration > 0 {
self.vector.x = -self.vector.x;
if self.iteration & 1 == 0 {
self.vector.y = -self.vector.y;
}
if self.iteration == 4 {
std::mem::swap(&mut self.vector.x, &mut self.vector.y);
}
self.iteration -= 1;
Some(self.vector)
} else {
None
}
}
}
#[cfg(test)]
mod tests {
use super::*;
fn get_points(coords: &[(i32, i32)]) -> Vec<Point> {
coords.iter().map(|(x, y)| Point::new(*x, *y)).collect()
}
#[test]
fn line_basic() {
let line = LinePoints::new(Point::new(0, 0), Point::new(3, 3));
let v = get_points(&[(0, 0), (1, 1), (2, 2), (3, 3), (123, 456)]);
for (&a, b) in v.iter().zip(line) {
assert_eq!(a, b);
}
}
#[test]
fn line_skewed() {
let line = LinePoints::new(Point::new(0, 0), Point::new(5, -7));
let v = get_points(&[
(0, 0),
(1, -1),
(2, -2),
(2, -3),
(3, -4),
(4, -5),
(4, -6),
(5, -7),
]);
for (&a, b) in v.iter().zip(line) {
assert_eq!(a, b);
}
}
#[test]
fn equidistant_full() {
let n = EquidistantPoints::new(Point::new(1, 3));
let v = get_points(&[
(-1, -3),
(1, -3),
(-1, 3),
(1, 3),
(-3, -1),
(3, -1),
(-3, 1),
(3, 1),
(123, 456),
]);
for (&a, b) in v.iter().zip(n) {
assert_eq!(a, b);
}
}
#[test]
fn equidistant_half() {
let n = EquidistantPoints::new(Point::new(2, 2));
let v = get_points(&[(-2, -2), (2, -2), (-2, 2), (2, 2), (123, 456)]);
for (&a, b) in v.iter().zip(n) {
assert_eq!(a, b);
}
}
}