Rewrite INSTALL file: Markdown format, add troubleshooting section, more detailed build instructions, etc.
// LzmaAlone.cpp
#include "StdAfx.h"
#include "../../../Common/MyWindows.h"
#include "../../../Common/MyInitGuid.h"
#include <stdio.h>
#if defined(_WIN32) || defined(OS2) || defined(MSDOS)
#include <fcntl.h>
#include <io.h>
#define MY_SET_BINARY_MODE(file) _setmode(_fileno(file), O_BINARY)
#else
#define MY_SET_BINARY_MODE(file)
#endif
#include "../../../Common/CommandLineParser.h"
#include "../../../Common/StringConvert.h"
#include "../../../Common/StringToInt.h"
#include "../../Common/FileStreams.h"
#include "../../Common/StreamUtils.h"
#include "../LZMA/LZMADecoder.h"
#include "../LZMA/LZMAEncoder.h"
#include "LzmaBenchCon.h"
#include "LzmaRam.h"
#ifdef COMPRESS_MF_MT
#include "../../../Windows/System.h"
#endif
#include "../../MyVersion.h"
extern "C"
{
#include "LzmaRamDecode.h"
}
using namespace NCommandLineParser;
#ifdef _WIN32
bool g_IsNT = false;
static inline bool IsItWindowsNT()
{
OSVERSIONINFO versionInfo;
versionInfo.dwOSVersionInfoSize = sizeof(versionInfo);
if (!::GetVersionEx(&versionInfo))
return false;
return (versionInfo.dwPlatformId == VER_PLATFORM_WIN32_NT);
}
#endif
static const char *kCantAllocate = "Can not allocate memory";
static const char *kReadError = "Read error";
static const char *kWriteError = "Write error";
namespace NKey {
enum Enum
{
kHelp1 = 0,
kHelp2,
kMode,
kDictionary,
kFastBytes,
kMatchFinderCycles,
kLitContext,
kLitPos,
kPosBits,
kMatchFinder,
kMultiThread,
kEOS,
kStdIn,
kStdOut,
kFilter86
};
}
static const CSwitchForm kSwitchForms[] =
{
{ L"?", NSwitchType::kSimple, false },
{ L"H", NSwitchType::kSimple, false },
{ L"A", NSwitchType::kUnLimitedPostString, false, 1 },
{ L"D", NSwitchType::kUnLimitedPostString, false, 1 },
{ L"FB", NSwitchType::kUnLimitedPostString, false, 1 },
{ L"MC", NSwitchType::kUnLimitedPostString, false, 1 },
{ L"LC", NSwitchType::kUnLimitedPostString, false, 1 },
{ L"LP", NSwitchType::kUnLimitedPostString, false, 1 },
{ L"PB", NSwitchType::kUnLimitedPostString, false, 1 },
{ L"MF", NSwitchType::kUnLimitedPostString, false, 1 },
{ L"MT", NSwitchType::kUnLimitedPostString, false, 0 },
{ L"EOS", NSwitchType::kSimple, false },
{ L"SI", NSwitchType::kSimple, false },
{ L"SO", NSwitchType::kSimple, false },
{ L"F86", NSwitchType::kPostChar, false, 0, 0, L"+" }
};
static const int kNumSwitches = sizeof(kSwitchForms) / sizeof(kSwitchForms[0]);
static void PrintHelp()
{
fprintf(stderr, "\nUsage: LZMA <e|d> inputFile outputFile [<switches>...]\n"
" e: encode file\n"
" d: decode file\n"
" b: Benchmark\n"
"<Switches>\n"
" -a{N}: set compression mode - [0, 1], default: 1 (max)\n"
" -d{N}: set dictionary - [0,30], default: 23 (8MB)\n"
" -fb{N}: set number of fast bytes - [5, 273], default: 128\n"
" -mc{N}: set number of cycles for match finder\n"
" -lc{N}: set number of literal context bits - [0, 8], default: 3\n"
" -lp{N}: set number of literal pos bits - [0, 4], default: 0\n"
" -pb{N}: set number of pos bits - [0, 4], default: 2\n"
" -mf{MF_ID}: set Match Finder: [bt2, bt3, bt4, hc4], default: bt4\n"
" -mt{N}: set number of CPU threads\n"
" -eos: write End Of Stream marker\n"
" -si: read data from stdin\n"
" -so: write data to stdout\n"
);
}
static void PrintHelpAndExit(const char *s)
{
fprintf(stderr, "\nError: %s\n\n", s);
PrintHelp();
throw -1;
}
static void IncorrectCommand()
{
PrintHelpAndExit("Incorrect command");
}
static void WriteArgumentsToStringList(int numArguments, const char *arguments[],
UStringVector &strings)
{
for(int i = 1; i < numArguments; i++)
strings.Add(MultiByteToUnicodeString(arguments[i]));
}
static bool GetNumber(const wchar_t *s, UInt32 &value)
{
value = 0;
if (MyStringLen(s) == 0)
return false;
const wchar_t *end;
UInt64 res = ConvertStringToUInt64(s, &end);
if (*end != L'\0')
return false;
if (res > 0xFFFFFFFF)
return false;
value = UInt32(res);
return true;
}
int main2(int n, const char *args[])
{
#ifdef _WIN32
g_IsNT = IsItWindowsNT();
#endif
fprintf(stderr, "\nLZMA " MY_VERSION_COPYRIGHT_DATE "\n");
if (n == 1)
{
PrintHelp();
return 0;
}
bool unsupportedTypes = (sizeof(Byte) != 1 || sizeof(UInt32) < 4 || sizeof(UInt64) < 4);
if (unsupportedTypes)
{
fprintf(stderr, "Unsupported base types. Edit Common/Types.h and recompile");
return 1;
}
UStringVector commandStrings;
WriteArgumentsToStringList(n, args, commandStrings);
CParser parser(kNumSwitches);
try
{
parser.ParseStrings(kSwitchForms, commandStrings);
}
catch(...)
{
IncorrectCommand();
}
if(parser[NKey::kHelp1].ThereIs || parser[NKey::kHelp2].ThereIs)
{
PrintHelp();
return 0;
}
const UStringVector &nonSwitchStrings = parser.NonSwitchStrings;
int paramIndex = 0;
if (paramIndex >= nonSwitchStrings.Size())
IncorrectCommand();
const UString &command = nonSwitchStrings[paramIndex++];
bool dictionaryIsDefined = false;
UInt32 dictionary = (UInt32)-1;
if(parser[NKey::kDictionary].ThereIs)
{
UInt32 dicLog;
if (!GetNumber(parser[NKey::kDictionary].PostStrings[0], dicLog))
IncorrectCommand();
dictionary = 1 << dicLog;
dictionaryIsDefined = true;
}
UString mf = L"BT4";
if (parser[NKey::kMatchFinder].ThereIs)
mf = parser[NKey::kMatchFinder].PostStrings[0];
UInt32 numThreads = (UInt32)-1;
#ifdef COMPRESS_MF_MT
if (parser[NKey::kMultiThread].ThereIs)
{
UInt32 numCPUs = NWindows::NSystem::GetNumberOfProcessors();
const UString &s = parser[NKey::kMultiThread].PostStrings[0];
if (s.IsEmpty())
numThreads = numCPUs;
else
if (!GetNumber(s, numThreads))
IncorrectCommand();
}
#endif
if (command.CompareNoCase(L"b") == 0)
{
const UInt32 kNumDefaultItereations = 1;
UInt32 numIterations = kNumDefaultItereations;
{
if (paramIndex < nonSwitchStrings.Size())
if (!GetNumber(nonSwitchStrings[paramIndex++], numIterations))
numIterations = kNumDefaultItereations;
}
return LzmaBenchCon(stderr, numIterations, numThreads, dictionary);
}
if (numThreads == (UInt32)-1)
numThreads = 1;
bool encodeMode = false;
if (command.CompareNoCase(L"e") == 0)
encodeMode = true;
else if (command.CompareNoCase(L"d") == 0)
encodeMode = false;
else
IncorrectCommand();
bool stdInMode = parser[NKey::kStdIn].ThereIs;
bool stdOutMode = parser[NKey::kStdOut].ThereIs;
CMyComPtr<ISequentialInStream> inStream;
CInFileStream *inStreamSpec = 0;
if (stdInMode)
{
inStream = new CStdInFileStream;
MY_SET_BINARY_MODE(stdin);
}
else
{
if (paramIndex >= nonSwitchStrings.Size())
IncorrectCommand();
const UString &inputName = nonSwitchStrings[paramIndex++];
inStreamSpec = new CInFileStream;
inStream = inStreamSpec;
if (!inStreamSpec->Open(GetSystemString(inputName)))
{
fprintf(stderr, "\nError: can not open input file %s\n",
(const char *)GetOemString(inputName));
return 1;
}
}
CMyComPtr<ISequentialOutStream> outStream;
COutFileStream *outStreamSpec = NULL;
if (stdOutMode)
{
outStream = new CStdOutFileStream;
MY_SET_BINARY_MODE(stdout);
}
else
{
if (paramIndex >= nonSwitchStrings.Size())
IncorrectCommand();
const UString &outputName = nonSwitchStrings[paramIndex++];
outStreamSpec = new COutFileStream;
outStream = outStreamSpec;
if (!outStreamSpec->Create(GetSystemString(outputName), true))
{
fprintf(stderr, "\nError: can not open output file %s\n",
(const char *)GetOemString(outputName));
return 1;
}
}
if (parser[NKey::kFilter86].ThereIs)
{
// -f86 switch is for x86 filtered mode: BCJ + LZMA.
if (parser[NKey::kEOS].ThereIs || stdInMode)
throw "Can not use stdin in this mode";
UInt64 fileSize;
inStreamSpec->File.GetLength(fileSize);
if (fileSize > 0xF0000000)
throw "File is too big";
UInt32 inSize = (UInt32)fileSize;
Byte *inBuffer = 0;
if (inSize != 0)
{
inBuffer = (Byte *)MyAlloc((size_t)inSize);
if (inBuffer == 0)
throw kCantAllocate;
}
UInt32 processedSize;
if (ReadStream(inStream, inBuffer, (UInt32)inSize, &processedSize) != S_OK)
throw "Can not read";
if ((UInt32)inSize != processedSize)
throw "Read size error";
Byte *outBuffer = 0;
size_t outSizeProcessed;
if (encodeMode)
{
// we allocate 105% of original size for output buffer
size_t outSize = (size_t)fileSize / 20 * 21 + (1 << 16);
if (outSize != 0)
{
outBuffer = (Byte *)MyAlloc((size_t)outSize);
if (outBuffer == 0)
throw kCantAllocate;
}
if (!dictionaryIsDefined)
dictionary = 1 << 23;
int res = LzmaRamEncode(inBuffer, inSize, outBuffer, outSize, &outSizeProcessed,
dictionary, parser[NKey::kFilter86].PostCharIndex == 0 ? SZ_FILTER_YES : SZ_FILTER_AUTO);
if (res != 0)
{
fprintf(stderr, "\nEncoder error = %d\n", (int)res);
return 1;
}
}
else
{
size_t outSize;
if (LzmaRamGetUncompressedSize(inBuffer, inSize, &outSize) != 0)
throw "data error";
if (outSize != 0)
{
outBuffer = (Byte *)MyAlloc(outSize);
if (outBuffer == 0)
throw kCantAllocate;
}
int res = LzmaRamDecompress(inBuffer, inSize, outBuffer, outSize, &outSizeProcessed, malloc, free);
if (res != 0)
throw "LzmaDecoder error";
}
if (WriteStream(outStream, outBuffer, (UInt32)outSizeProcessed, &processedSize) != S_OK)
throw kWriteError;
MyFree(outBuffer);
MyFree(inBuffer);
return 0;
}
UInt64 fileSize;
if (encodeMode)
{
NCompress::NLZMA::CEncoder *encoderSpec = new NCompress::NLZMA::CEncoder;
CMyComPtr<ICompressCoder> encoder = encoderSpec;
if (!dictionaryIsDefined)
dictionary = 1 << 23;
UInt32 posStateBits = 2;
UInt32 litContextBits = 3; // for normal files
// UInt32 litContextBits = 0; // for 32-bit data
UInt32 litPosBits = 0;
// UInt32 litPosBits = 2; // for 32-bit data
UInt32 algorithm = 1;
UInt32 numFastBytes = 128;
UInt32 matchFinderCycles = 16 + numFastBytes / 2;
bool matchFinderCyclesDefined = false;
bool eos = parser[NKey::kEOS].ThereIs || stdInMode;
if(parser[NKey::kMode].ThereIs)
if (!GetNumber(parser[NKey::kMode].PostStrings[0], algorithm))
IncorrectCommand();
if(parser[NKey::kFastBytes].ThereIs)
if (!GetNumber(parser[NKey::kFastBytes].PostStrings[0], numFastBytes))
IncorrectCommand();
matchFinderCyclesDefined = parser[NKey::kMatchFinderCycles].ThereIs;
if (matchFinderCyclesDefined)
if (!GetNumber(parser[NKey::kMatchFinderCycles].PostStrings[0], matchFinderCycles))
IncorrectCommand();
if(parser[NKey::kLitContext].ThereIs)
if (!GetNumber(parser[NKey::kLitContext].PostStrings[0], litContextBits))
IncorrectCommand();
if(parser[NKey::kLitPos].ThereIs)
if (!GetNumber(parser[NKey::kLitPos].PostStrings[0], litPosBits))
IncorrectCommand();
if(parser[NKey::kPosBits].ThereIs)
if (!GetNumber(parser[NKey::kPosBits].PostStrings[0], posStateBits))
IncorrectCommand();
PROPID propIDs[] =
{
NCoderPropID::kDictionarySize,
NCoderPropID::kPosStateBits,
NCoderPropID::kLitContextBits,
NCoderPropID::kLitPosBits,
NCoderPropID::kAlgorithm,
NCoderPropID::kNumFastBytes,
NCoderPropID::kMatchFinder,
NCoderPropID::kEndMarker,
NCoderPropID::kNumThreads,
NCoderPropID::kMatchFinderCycles,
};
const int kNumPropsMax = sizeof(propIDs) / sizeof(propIDs[0]);
PROPVARIANT properties[kNumPropsMax];
for (int p = 0; p < 6; p++)
properties[p].vt = VT_UI4;
properties[0].ulVal = (UInt32)dictionary;
properties[1].ulVal = (UInt32)posStateBits;
properties[2].ulVal = (UInt32)litContextBits;
properties[3].ulVal = (UInt32)litPosBits;
properties[4].ulVal = (UInt32)algorithm;
properties[5].ulVal = (UInt32)numFastBytes;
properties[6].vt = VT_BSTR;
properties[6].bstrVal = (BSTR)(const wchar_t *)mf;
properties[7].vt = VT_BOOL;
properties[7].boolVal = eos ? VARIANT_TRUE : VARIANT_FALSE;
properties[8].vt = VT_UI4;
properties[8].ulVal = (UInt32)numThreads;
// it must be last in property list
properties[9].vt = VT_UI4;
properties[9].ulVal = (UInt32)matchFinderCycles;
int numProps = kNumPropsMax;
if (!matchFinderCyclesDefined)
numProps--;
if (encoderSpec->SetCoderProperties(propIDs, properties, numProps) != S_OK)
IncorrectCommand();
encoderSpec->WriteCoderProperties(outStream);
if (eos || stdInMode)
fileSize = (UInt64)(Int64)-1;
else
inStreamSpec->File.GetLength(fileSize);
for (int i = 0; i < 8; i++)
{
Byte b = Byte(fileSize >> (8 * i));
if (outStream->Write(&b, 1, 0) != S_OK)
{
fprintf(stderr, kWriteError);
return 1;
}
}
HRESULT result = encoder->Code(inStream, outStream, 0, 0, 0);
if (result == E_OUTOFMEMORY)
{
fprintf(stderr, "\nError: Can not allocate memory\n");
return 1;
}
else if (result != S_OK)
{
fprintf(stderr, "\nEncoder error = %X\n", (unsigned int)result);
return 1;
}
}
else
{
NCompress::NLZMA::CDecoder *decoderSpec = new NCompress::NLZMA::CDecoder;
CMyComPtr<ICompressCoder> decoder = decoderSpec;
const UInt32 kPropertiesSize = 5;
Byte properties[kPropertiesSize];
UInt32 processedSize;
if (ReadStream(inStream, properties, kPropertiesSize, &processedSize) != S_OK)
{
fprintf(stderr, kReadError);
return 1;
}
if (processedSize != kPropertiesSize)
{
fprintf(stderr, kReadError);
return 1;
}
if (decoderSpec->SetDecoderProperties2(properties, kPropertiesSize) != S_OK)
{
fprintf(stderr, "SetDecoderProperties error");
return 1;
}
fileSize = 0;
for (int i = 0; i < 8; i++)
{
Byte b;
if (inStream->Read(&b, 1, &processedSize) != S_OK)
{
fprintf(stderr, kReadError);
return 1;
}
if (processedSize != 1)
{
fprintf(stderr, kReadError);
return 1;
}
fileSize |= ((UInt64)b) << (8 * i);
}
if (decoder->Code(inStream, outStream, 0, &fileSize, 0) != S_OK)
{
fprintf(stderr, "Decoder error");
return 1;
}
}
if (outStreamSpec != NULL)
{
if (outStreamSpec->Close() != S_OK)
{
fprintf(stderr, "File closing error");
return 1;
}
}
return 0;
}
int main(int n, const char *args[])
{
try { return main2(n, args); }
catch(const char *s)
{
fprintf(stderr, "\nError: %s\n", s);
return 1;
}
catch(...)
{
fprintf(stderr, "\nError\n");
return 1;
}
}