hedgewars-engine (rust): don't use image lib, manually resize (because speed); using nearest px for now
(*
* Hedgewars, a free turn based strategy game
* Copyright (c) 2004-2015 Andrey Korotaev <unC0Rr@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*)
{$INCLUDE "options.inc"}
unit uCollisions;
interface
uses uFloat, uTypes, uUtils;
const cMaxGearArrayInd = 1023;
const cMaxGearHitOrderInd = 1023;
const cMaxGearProximityCacheInd = 1023;
type PGearArray = ^TGearArray;
TGearArray = record
ar: array[0..cMaxGearArrayInd] of PGear;
cX: array[0..cMaxGearArrayInd] of LongInt;
cY: array[0..cMaxGearArrayInd] of LongInt;
Count: Longword
end;
type PGearHitOrder = ^TGearHitOrder;
TGearHitOrder = record
ar: array[0..cMaxGearHitOrderInd] of PGear;
order: array[0..cMaxGearHitOrderInd] of LongInt;
Count: Longword
end;
type PGearProximityCache = ^TGearProximityCache;
TGearProximityCache = record
ar: array[0..cMaxGearProximityCacheInd] of PGear;
Count: Longword
end;
type TLineCollision = record
hasCollision: Boolean;
cX, cY: LongInt; //for visual effects only
end;
type TKickTest = record
kick: Boolean;
collisionMask: Word;
end;
procedure initModule;
procedure freeModule;
procedure AddCI(Gear: PGear);
procedure DeleteCI(Gear: PGear);
function CheckGearsCollision(Gear: PGear): PGearArray;
function CheckAllGearsCollision(SourceGear: PGear): PGearArray;
function CheckCacheCollision(SourceGear: PGear): PGearArray;
function CheckGearsLineCollision(Gear: PGear; oX, oY, tX, tY: hwFloat): PGearArray;
function CheckAllGearsLineCollision(SourceGear: PGear; oX, oY, tX, tY: hwFloat): PGearArray;
function UpdateHitOrder(Gear: PGear; Order: LongInt): boolean; inline;
function UpdateHitOrder(Gear: PGear; Order: LongInt; Global: boolean): boolean; inline;
function UpdateGlobalHitOrder(Gear: PGear; Order: LongInt): boolean; inline;
procedure ClearHitOrderLeq(MinOrder: LongInt); inline;
procedure ClearGlobalHitOrderLeq(MinOrder: LongInt); inline;
procedure ClearHitOrder();
procedure RefillProximityCache(SourceGear: PGear; radius: LongInt);
procedure RemoveFromProximityCache(Gear: PGear);
procedure ClearProximityCache();
function TestCollisionXImpl(centerX, centerY, radius, direction: LongInt; collisionMask: Word): Word;
function TestCollisionYImpl(centerX, centerY, radius, direction: LongInt; collisionMask: Word): Word;
function TestCollisionXwithGear(Gear: PGear; Dir: LongInt): Word; inline;
function TestCollisionYwithGear(Gear: PGear; Dir: LongInt): Word; inline;
function TestCollisionX(Gear: PGear; Dir: LongInt): Word; inline;
function TestCollisionY(Gear: PGear; Dir: LongInt): Word; inline;
function TestCollisionXwithXYShift(Gear: PGear; ShiftX: hwFloat; ShiftY: LongInt; Dir: LongInt): Word; inline;
function TestCollisionXwithXYShift(Gear: PGear; ShiftX: hwFloat; ShiftY: LongInt; Dir: LongInt; withGear: boolean): Word; inline;
function TestCollisionYwithXYShift(Gear: PGear; ShiftX, ShiftY: LongInt; Dir: LongInt): Word; inline;
function TestCollisionYwithXYShift(Gear: PGear; ShiftX, ShiftY: LongInt; Dir: LongInt; withGear: boolean): Word; inline;
function TestCollisionXKickImpl(centerX, centerY, radius, direction: LongInt; collisionMask, kickMask: Word): TKickTest;
function TestCollisionYKickImpl(centerX, centerY, radius, direction: LongInt; collisionMask, kickMask: Word): TKickTest;
function TestCollisionXKick(Gear: PGear; Dir: LongInt): Word;
function TestCollisionYKick(Gear: PGear; Dir: LongInt): Word;
function TestRectangleForObstacle(x1, y1, x2, y2: LongInt; landOnly: boolean): boolean;
function CheckCoordInWater(X, Y: LongInt): boolean; inline;
// returns: negative sign if going downhill to left, value is steepness (noslope/error = _0, 45 = _0_5)
function CalcSlopeBelowGear(Gear: PGear): hwFloat;
function CalcSlopeNearGear(Gear: PGear; dirX, dirY: LongInt): hwFloat;
function CalcSlopeTangent(Gear: PGear; collisionX, collisionY: LongInt; var outDeltaX, outDeltaY: LongInt; TestWord: LongWord): boolean;
function CheckGearsUnderSprite(Sprite: TSprite; sprX, sprY, Frame: LongInt): boolean;
implementation
uses uConsts, uLandGraphics, uVariables, SDLh, uLandTexture, uDebug;
type TCollisionEntry = record
X, Y, Radius: LongInt;
cGear: PGear;
end;
const MAXRECTSINDEX = 1023;
var Count: Longword;
cinfos: array[0..MAXRECTSINDEX] of TCollisionEntry;
ga: TGearArray;
ordera: TGearHitOrder;
globalordera: TGearHitOrder;
proximitya: TGearProximityCache;
procedure AddCI(Gear: PGear);
begin
if (Gear^.CollisionIndex >= 0) or (Count > MAXRECTSINDEX) or
((Count > MAXRECTSINDEX-200) and ((Gear^.Kind = gtMine) or (Gear^.Kind = gtSMine) or (Gear^.Kind = gtKnife))) then
exit;
with cinfos[Count] do
begin
X:= hwRound(Gear^.X);
Y:= hwRound(Gear^.Y);
Radius:= Gear^.Radius;
ChangeRoundInLand(X, Y, Radius - 1, true, ((CurrentHedgehog <> nil) and (Gear = CurrentHedgehog^.Gear)) or ((Gear^.Kind = gtCase) and (Gear^.State and gstFrozen = 0)), Gear^.Kind = gtHedgehog);
cGear:= Gear
end;
Gear^.CollisionIndex:= Count;
inc(Count);
end;
procedure DeleteCI(Gear: PGear);
begin
if Gear^.CollisionIndex >= 0 then
begin
with cinfos[Gear^.CollisionIndex] do
ChangeRoundInLand(X, Y, Radius - 1, false, ((CurrentHedgehog <> nil) and (Gear = CurrentHedgehog^.Gear)) or ((Gear^.Kind = gtCase) and (Gear^.State and gstFrozen = 0)), Gear^.Kind = gtHedgehog);
cinfos[Gear^.CollisionIndex]:= cinfos[Pred(Count)];
cinfos[Gear^.CollisionIndex].cGear^.CollisionIndex:= Gear^.CollisionIndex;
Gear^.CollisionIndex:= -1;
dec(Count)
end;
end;
function CheckCoordInWater(X, Y: LongInt): boolean; inline;
begin
CheckCoordInWater:= (Y > cWaterLine)
or ((WorldEdge = weSea) and ((X < leftX) or (X > rightX)));
end;
function CheckGearsCollision(Gear: PGear): PGearArray;
var mx, my, tr: LongInt;
i: Longword;
begin
CheckGearsCollision:= @ga;
ga.Count:= 0;
if Count = 0 then
exit;
mx:= hwRound(Gear^.X);
my:= hwRound(Gear^.Y);
tr:= Gear^.Radius + 2;
for i:= 0 to Pred(Count) do
with cinfos[i] do
if (Gear <> cGear) and
(sqr(mx - x) + sqr(my - y) <= sqr(Radius + tr)) then
begin
ga.ar[ga.Count]:= cinfos[i].cGear;
ga.cX[ga.Count]:= hwround(Gear^.X);
ga.cY[ga.Count]:= hwround(Gear^.Y);
inc(ga.Count)
end
end;
function CheckAllGearsCollision(SourceGear: PGear): PGearArray;
var mx, my, tr: LongInt;
Gear: PGear;
begin
CheckAllGearsCollision:= @ga;
ga.Count:= 0;
mx:= hwRound(SourceGear^.X);
my:= hwRound(SourceGear^.Y);
tr:= SourceGear^.Radius + 2;
Gear:= GearsList;
while Gear <> nil do
begin
if (Gear <> SourceGear) and
(sqr(mx - hwRound(Gear^.x)) + sqr(my - hwRound(Gear^.y)) <= sqr(Gear^.Radius + tr))then
begin
ga.ar[ga.Count]:= Gear;
ga.cX[ga.Count]:= mx;
ga.cY[ga.Count]:= my;
inc(ga.Count)
end;
Gear := Gear^.NextGear
end;
end;
function LineCollisionTest(oX, oY, dirX, dirY, dirNormSqr, dirNormBound: hwFloat;
width: LongInt; Gear: PGear):
TLineCollision; inline;
var toCenterX, toCenterY, r,
b, bSqr, c, desc, t: hwFloat;
realT: extended;
begin
LineCollisionTest.hasCollision:= false;
toCenterX:= (oX - Gear^.X);
toCenterY:= (oY - Gear^.Y);
r:= int2hwFloat(Gear^.Radius + width + 2);
// Early cull to avoid multiplying large numbers
if hwAbs(toCenterX) + hwAbs(toCenterY) > dirNormBound + r then
exit;
b:= dirX * toCenterX + dirY * toCenterY;
c:= hwSqr(toCenterX) + hwSqr(toCenterY) - hwSqr(r);
if (b > _0) and (c > _0) then
exit;
bSqr:= hwSqr(b);
desc:= bSqr - dirNormSqr * c;
if desc.isNegative then exit;
t:= -b - hwSqrt(desc);
if t.isNegative then t:= _0;
if t < dirNormSqr then
with LineCollisionTest do
begin
hasCollision:= true;
realT := hwFloat2Float(t) / hwFloat2Float(dirNormSqr);
cX:= round(hwFloat2Float(oX) + realT * hwFloat2Float(dirX));
cY:= round(hwFloat2Float(oY) + realT * hwFloat2Float(dirY));
end;
end;
function CheckGearsLineCollision(Gear: PGear; oX, oY, tX, tY: hwFloat): PGearArray;
var dirX, dirY, dirNormSqr, dirNormBound: hwFloat;
test: TLineCollision;
i: Longword;
begin
CheckGearsLineCollision:= @ga;
ga.Count:= 0;
if Count = 0 then
exit;
dirX:= (tX - oX);
dirY:= (tY - oY);
dirNormBound:= _1_5 * (hwAbs(dirX) + hwAbs(dirY));
dirNormSqr:= hwSqr(dirX) + hwSqr(dirY);
if dirNormSqr.isNegative then
exit;
for i:= 0 to Pred(Count) do
with cinfos[i] do if Gear <> cGear then
begin
test:= LineCollisionTest(
oX, oY, dirX, dirY, dirNormSqr, dirNormBound, Gear^.Radius, cGear);
if test.hasCollision then
begin
ga.ar[ga.Count] := cGear;
ga.cX[ga.Count] := test.cX;
ga.cY[ga.Count] := test.cY;
inc(ga.Count)
end
end
end;
function CheckAllGearsLineCollision(SourceGear: PGear; oX, oY, tX, tY: hwFloat): PGearArray;
var dirX, dirY, dirNormSqr, dirNormBound: hwFloat;
test: TLineCollision;
Gear: PGear;
begin
CheckAllGearsLineCollision:= @ga;
ga.Count:= 0;
dirX:= (tX - oX);
dirY:= (tY - oY);
dirNormBound:= _1_5 * (hwAbs(dirX) + hwAbs(dirY));
dirNormSqr:= hwSqr(dirX) + hwSqr(dirY);
if dirNormSqr.isNegative then
exit;
Gear:= GearsList;
while Gear <> nil do
begin
if SourceGear <> Gear then
begin
test:= LineCollisionTest(
oX, oY, dirX, dirY, dirNormSqr, dirNormBound, SourceGear^.Radius, Gear);
if test.hasCollision then
begin
ga.ar[ga.Count] := Gear;
ga.cX[ga.Count] := test.cX;
ga.cY[ga.Count] := test.cY;
inc(ga.Count)
end
end;
Gear := Gear^.NextGear
end;
end;
function CheckCacheCollision(SourceGear: PGear): PGearArray;
var mx, my, tr, i: LongInt;
Gear: PGear;
begin
CheckCacheCollision:= @ga;
ga.Count:= 0;
mx:= hwRound(SourceGear^.X);
my:= hwRound(SourceGear^.Y);
tr:= SourceGear^.Radius + 2;
for i:= 0 to proximitya.Count - 1 do
begin
Gear:= proximitya.ar[i];
// Assuming the cache has been filled correctly, it will not contain SourceGear
// and other gears won't be far enough for sqr overflow
if (sqr(mx - hwRound(Gear^.X)) + sqr(my - hwRound(Gear^.Y)) <= sqr(Gear^.Radius + tr)) then
begin
ga.ar[ga.Count]:= Gear;
ga.cX[ga.Count]:= mx;
ga.cY[ga.Count]:= my;
inc(ga.Count)
end;
end;
end;
function UpdateHitOrderImpl(HitOrder: PGearHitOrder; Gear: PGear; Order: LongInt): boolean;
var i: LongInt;
begin
UpdateHitOrderImpl:= true;
for i := 0 to HitOrder^.Count - 1 do
if HitOrder^.ar[i] = Gear then
begin
if Order <= HitOrder^.order[i] then
UpdateHitOrderImpl := false;
HitOrder^.order[i] := Max(HitOrder^.order[i], Order);
exit;
end;
if HitOrder^.Count > cMaxGearHitOrderInd then
UpdateHitOrderImpl := false
else
begin
HitOrder^.ar[HitOrder^.Count] := Gear;
HitOrder^.order[HitOrder^.Count] := Order;
Inc(HitOrder^.Count);
end
end;
function UpdateHitOrder(Gear: PGear; Order: LongInt): boolean; inline;
begin
UpdateHitOrder := UpdateHitOrderImpl(@ordera, Gear, Order);
end;
function UpdateHitOrder(Gear: PGear; Order: LongInt; Global: boolean): boolean; inline;
begin
if Global then
UpdateHitOrder := UpdateHitOrderImpl(@globalordera, Gear, Order)
else
UpdateHitOrder := UpdateHitOrderImpl(@ordera, Gear, Order)
end;
function UpdateGlobalHitOrder(Gear: PGear; Order: LongInt): boolean; inline;
begin
UpdateGlobalHitOrder := UpdateHitOrderImpl(@globalordera, Gear, Order);
end;
procedure ClearHitOrderLeqImpl(HitOrder: PGearHitOrder; MinOrder: LongInt);
var i, freeIndex: LongInt;
begin;
freeIndex:= 0;
i:= 0;
while i < HitOrder^.Count do
begin
if HitOrder^.order[i] <= MinOrder then
Dec(HitOrder^.Count)
else
begin
if freeIndex < i then
begin
HitOrder^.ar[freeIndex]:= HitOrder^.ar[i];
HitOrder^.order[freeIndex]:= HitOrder^.order[i];
end;
Inc(freeIndex);
end;
Inc(i)
end
end;
procedure ClearHitOrderLeq(MinOrder: LongInt); inline;
begin
ClearHitOrderLeqImpl(@ordera, MinOrder);
end;
procedure ClearGlobalHitOrderLeq(MinOrder: LongInt); inline;
begin
ClearHitOrderLeqImpl(@globalordera, MinOrder);
end;
procedure ClearHitOrder();
begin
ordera.Count:= 0;
end;
procedure RefillProximityCache(SourceGear: PGear; radius: LongInt);
var cx, cy, dx, dy, r: LongInt;
Gear: PGear;
begin
proximitya.Count:= 0;
cx:= hwRound(SourceGear^.X);
cy:= hwRound(SourceGear^.Y);
Gear:= GearsList;
while (Gear <> nil) and (proximitya.Count <= cMaxGearProximityCacheInd) do
begin
dx:= abs(hwRound(Gear^.X) - cx);
dy:= abs(hwRound(Gear^.Y) - cy);
r:= radius + Gear^.radius + 2;
if (Gear <> SourceGear) and (max(dx, dy) <= r) and (sqr(dx) + sqr(dy) <= sqr(r)) then
begin
proximitya.ar[proximitya.Count]:= Gear;
inc(proximitya.Count)
end;
Gear := Gear^.NextGear
end;
end;
procedure RemoveFromProximityCache(Gear: PGear);
var i: LongInt;
begin
i := 0;
while i < proximitya.Count do
begin
if proximitya.ar[i] = Gear then
begin
proximitya.ar[i]:= proximitya.ar[proximitya.Count - 1];
dec(proximitya.Count);
end
else
inc(i);
end;
end;
procedure ClearProximityCache();
begin
proximitya.Count:= 0;
end;
function TestCollisionXImpl(centerX, centerY, radius, direction: LongInt; collisionMask: Word): Word;
var x, y, minY, maxY: LongInt;
begin
if direction < 0 then
x := centerX - radius
else
x := centerX + radius;
if (x and LAND_WIDTH_MASK) = 0 then
begin
minY := max(centerY - radius + 1, 0);
maxY := min(centerY + radius - 1, LAND_HEIGHT - 1);
for y := minY to maxY do
if Land[y, x] and collisionMask <> 0 then
exit(Land[y, x] and collisionMask);
end;
TestCollisionXImpl := 0;
end;
function TestCollisionYImpl(centerX, centerY, radius, direction: LongInt; collisionMask: Word): Word;
var x, y, minX, maxX: LongInt;
begin
if direction < 0 then
y := centerY - radius
else
y := centerY + radius;
if (y and LAND_HEIGHT_MASK) = 0 then
begin
minX := max(centerX - radius + 1, 0);
maxX := min(centerX + radius - 1, LAND_WIDTH - 1);
for x := minX to maxX do
if Land[y, x] and collisionMask <> 0 then
exit(Land[y, x] and collisionMask);
end;
TestCollisionYImpl := 0;
end;
function TestCollisionX(Gear: PGear; Dir: LongInt): Word; inline;
begin
TestCollisionX := TestCollisionXImpl(hwRound(Gear^.X), hwRound(Gear^.Y), Gear^.Radius, Dir, Gear^.CollisionMask and lfLandMask);
end;
function TestCollisionY(Gear: PGear; Dir: LongInt): Word; inline;
begin
TestCollisionY := TestCollisionYImpl(hwRound(Gear^.X), hwRound(Gear^.Y), Gear^.Radius, Dir, Gear^.CollisionMask and lfLandMask);
end;
procedure LegacyFixupX(Gear: PGear);
begin
// Special case to emulate the old intersect gear clearing, but with a bit of slop for pixel overlap
if (Gear^.CollisionMask = lfNotCurHogCrate) and (Gear^.Kind <> gtHedgehog) and (Gear^.Hedgehog <> nil) and (Gear^.Hedgehog^.Gear <> nil) and
((hwRound(Gear^.Hedgehog^.Gear^.X) + Gear^.Hedgehog^.Gear^.Radius + 16 < hwRound(Gear^.X) - Gear^.Radius) or
(hwRound(Gear^.Hedgehog^.Gear^.X) - Gear^.Hedgehog^.Gear^.Radius - 16 > hwRound(Gear^.X) + Gear^.Radius)) then
Gear^.CollisionMask:= lfAll;
end;
procedure LegacyFixupY(Gear: PGear);
begin
// Special case to emulate the old intersect gear clearing, but with a bit of slop for pixel overlap
if (Gear^.CollisionMask = lfNotCurHogCrate) and (Gear^.Kind <> gtHedgehog) and (Gear^.Hedgehog <> nil) and (Gear^.Hedgehog^.Gear <> nil) and
((hwRound(Gear^.Hedgehog^.Gear^.Y) + Gear^.Hedgehog^.Gear^.Radius + 16 < hwRound(Gear^.Y) - Gear^.Radius) or
(hwRound(Gear^.Hedgehog^.Gear^.Y) - Gear^.Hedgehog^.Gear^.Radius - 16 > hwRound(Gear^.Y) + Gear^.Radius)) then
Gear^.CollisionMask:= lfAll;
end;
function TestCollisionXwithGear(Gear: PGear; Dir: LongInt): Word; inline;
begin
LegacyFixupX(Gear);
TestCollisionXwithGear:= TestCollisionXImpl(hwRound(Gear^.X), hwRound(Gear^.Y), Gear^.Radius, Dir, Gear^.CollisionMask);
end;
function TestCollisionYwithGear(Gear: PGear; Dir: LongInt): Word; inline;
begin
LegacyFixupY(Gear);
TestCollisionYwithGear:= TestCollisionYImpl(hwRound(Gear^.X), hwRound(Gear^.Y), Gear^.Radius, Dir, Gear^.CollisionMask);
end;
function TestCollisionXwithXYShift(Gear: PGear; ShiftX: hwFloat; ShiftY: LongInt; Dir: LongInt; withGear: boolean): Word; inline;
var collisionMask: Word;
begin
if withGear then
begin
LegacyFixupX(Gear);
collisionMask:= Gear^.CollisionMask;
end
else
collisionMask:= Gear^.CollisionMask and lfLandMask;
TestCollisionXwithXYShift := TestCollisionXImpl(hwRound(Gear^.X + ShiftX), hwRound(Gear^.Y) + ShiftY, Gear^.Radius, Dir, collisionMask)
end;
function TestCollisionYwithXYShift(Gear: PGear; ShiftX, ShiftY: LongInt; Dir: LongInt; withGear: boolean): Word; inline;
var collisionMask: Word;
begin
if withGear then
begin
LegacyFixupY(Gear);
collisionMask:= Gear^.CollisionMask;
end
else
collisionMask:= Gear^.CollisionMask and lfLandMask;
TestCollisionYwithXYShift := TestCollisionYImpl(hwRound(Gear^.X) + ShiftX, hwRound(Gear^.Y) + ShiftY, Gear^.Radius, Dir, collisionMask)
end;
function TestCollisionXwithXYShift(Gear: PGear; ShiftX: hwFloat; ShiftY: LongInt; Dir: LongInt): Word; inline;
begin
TestCollisionXwithXYShift:= TestCollisionXwithXYShift(Gear, ShiftX, ShiftY, Dir, true);
end;
function TestCollisionYwithXYShift(Gear: PGear; ShiftX, ShiftY: LongInt; Dir: LongInt): Word; inline;
begin
TestCollisionYwithXYShift:= TestCollisionYwithXYShift(Gear, ShiftX, ShiftY, Dir, true);
end;
function TestCollisionXKickImpl(centerX, centerY, radius, direction: LongInt; collisionMask, kickMask: Word): TKickTest;
var x, y, minY, maxY: LongInt;
begin
TestCollisionXKickImpl.kick := false;
TestCollisionXKickImpl.collisionMask := 0;
if direction < 0 then
x := centerX - radius
else
x := centerX + radius;
if (x and LAND_WIDTH_MASK) = 0 then
begin
minY := max(centerY - radius + 1, 0);
maxY := min(centerY + radius - 1, LAND_HEIGHT - 1);
for y := minY to maxY do
if Land[y, x] and collisionMask <> 0 then
begin
TestCollisionXKickImpl.kick := false;
TestCollisionXKickImpl.collisionMask := Land[y, x] and collisionMask;
exit
end
else if Land[y, x] and kickMask <> 0 then
begin
TestCollisionXKickImpl.kick := true;
TestCollisionXKickImpl.collisionMask := Land[y, x] and kickMask;
end;
end;
end;
function TestCollisionYKickImpl(centerX, centerY, radius, direction: LongInt; collisionMask, kickMask: Word): TKickTest;
var x, y, minX, maxX: LongInt;
begin
TestCollisionYKickImpl.kick := false;
TestCollisionYKickImpl.collisionMask := 0;
if direction < 0 then
y := centerY - radius
else
y := centerY + radius;
if (y and LAND_HEIGHT_MASK) = 0 then
begin
minX := max(centerX - radius + 1, 0);
maxX := min(centerX + radius - 1, LAND_WIDTH - 1);
for x := minX to maxX do
if Land[y, x] and collisionMask <> 0 then
begin
TestCollisionYKickImpl.kick := false;
TestCollisionYKickImpl.collisionMask := Land[y, x] and collisionMask;
exit
end
else if Land[y, x] and kickMask <> 0 then
begin
TestCollisionYKickImpl.kick := true;
TestCollisionYKickImpl.collisionMask := Land[y, x] and kickMask;
end;
end;
end;
function TestCollisionXKick(Gear: PGear; Dir: LongInt): Word;
var centerX, centerY, i: LongInt;
test: TKickTest;
info: TCollisionEntry;
begin
test := TestCollisionXKickImpl(
hwRound(Gear^.X), hwRound(Gear^.Y),
Gear^.Radius, Dir,
Gear^.CollisionMask and lfLandMask, Gear^.CollisionMask);
TestCollisionXKick := test.collisionMask;
if test.kick then
begin
if hwAbs(Gear^.dX) < cHHKick then
exit;
if ((Gear^.State and gstHHJumping) <> 0) and (hwAbs(Gear^.dX) < _0_4) then
exit;
centerX := hwRound(Gear^.X);
centerY := hwRound(Gear^.Y);
for i:= 0 to Pred(Count) do
begin
info:= cinfos[i];
if (Gear <> info.cGear)
and ((centerX > info.X) xor (Dir > 0))
and ((info.cGear^.State and gstNotKickable) = 0)
and ((info.cGear^.Kind in [gtHedgehog, gtMine, gtKnife, gtSentry])
or (info.cGear^.Kind = gtExplosives) and ((info.cGear^.State and gsttmpflag) <> 0)) // only apply X kick if the barrel is knocked over
and (sqr(centerX - info.X) + sqr(centerY - info.Y) <= sqr(info.Radius + Gear^.Radius + 2)) then
begin
with info.cGear^ do
begin
dX := Gear^.dX;
dY := Gear^.dY * _0_5;
State := State or gstMoving;
if Kind = gtKnife then State := State and (not gstCollision);
Active:= true
end;
DeleteCI(info.cGear);
exit(0)
end
end
end
end;
function TestCollisionYKick(Gear: PGear; Dir: LongInt): Word;
var centerX, centerY, i: LongInt;
test: TKickTest;
info: TCollisionEntry;
begin
test := TestCollisionYKickImpl(
hwRound(Gear^.X), hwRound(Gear^.Y),
Gear^.Radius, Dir,
Gear^.CollisionMask and lfLandMask, Gear^.CollisionMask);
TestCollisionYKick := test.collisionMask;
if test.kick then
begin
if hwAbs(Gear^.dY) < cHHKick then
exit;
if ((Gear^.State and gstHHJumping) <> 0) and (not Gear^.dY.isNegative) and (Gear^.dY < _0_4) then
exit;
centerX := hwRound(Gear^.X);
centerY := hwRound(Gear^.Y);
for i := 0 to Pred(Count) do
begin
info := cinfos[i];
if (Gear <> info.cGear)
and ((centerY + Gear^.Radius > info.Y) xor (Dir > 0))
and (info.cGear^.State and gstNotKickable = 0)
and (info.cGear^.Kind in [gtHedgehog, gtMine, gtKnife, gtExplosives, gtSentry])
and (sqr(centerX - info.X) + sqr(centerY - info.Y) <= sqr(info.Radius + Gear^.Radius + 2)) then
begin
with info.cGear^ do
begin
if (Kind <> gtExplosives) or ((State and gsttmpflag) <> 0) then
dX := Gear^.dX * _0_5;
dY := Gear^.dY;
State := State or gstMoving;
if Kind = gtKnife then State:= State and (not gstCollision);
Active := true
end;
DeleteCI(info.cGear);
exit(0)
end
end
end
end;
function TestRectangleForObstacle(x1, y1, x2, y2: LongInt; landOnly: boolean): boolean;
var x, y: LongInt;
TestWord: LongWord;
begin
TestRectangleForObstacle:= true;
if landOnly then
TestWord:= 255
else
TestWord:= 0;
if x1 > x2 then
begin
x := x1;
x1 := x2;
x2 := x;
end;
if y1 > y2 then
begin
y := y1;
y1 := y2;
y2 := y;
end;
if (hasBorder and ((y1 < 0) or (x1 < 0) or (x2 > LAND_WIDTH))) then
exit;
for y := y1 to y2 do
for x := x1 to x2 do
if ((y and LAND_HEIGHT_MASK) = 0) and ((x and LAND_WIDTH_MASK) = 0) and (Land[y, x] > TestWord) then
exit;
TestRectangleForObstacle:= false
end;
function CalcSlopeTangent(Gear: PGear; collisionX, collisionY: LongInt; var outDeltaX, outDeltaY: LongInt; TestWord: LongWord): boolean;
var ldx, ldy, rdx, rdy: LongInt;
i, j, k, mx, my, li, ri, jfr, jto, tmpo : ShortInt;
tmpx, tmpy: LongWord;
dx, dy, s: hwFloat;
offset: array[0..7,0..1] of ShortInt;
isColl: Boolean;
begin
CalcSlopeTangent:= false;
dx:= Gear^.dX;
dy:= Gear^.dY;
// we start searching from the direction the gear came from
if (dx.QWordValue > _0_995.QWordValue )
or (dy.QWordValue > _0_995.QWordValue ) then
begin // scale
s := _0_995 / Distance(dx,dy);
dx := s * dx;
dy := s * dy;
end;
mx:= hwRound(Gear^.X-dx) - hwRound(Gear^.X);
my:= hwRound(Gear^.Y-dy) - hwRound(Gear^.Y);
li:= -1;
ri:= -1;
// go around collision pixel, checking for first/last collisions
// this will determinate what angles will be tried to crawl along
for i:= 0 to 7 do
begin
offset[i,0]:= mx;
offset[i,1]:= my;
// multiplicator k tries to skip small pixels/gaps when possible
for k:= 4 downto 1 do
begin
tmpx:= collisionX + k * mx;
tmpy:= collisionY + k * my;
if (((tmpy) and LAND_HEIGHT_MASK) = 0) and (((tmpx) and LAND_WIDTH_MASK) = 0) then
if (Land[tmpy,tmpx] > TestWord) then
begin
// remember the index belonging to the first and last collision (if in 1st half)
if (i <> 0) then
begin
if (ri = -1) then
ri:= i
else
li:= i;
end;
end;
end;
if i = 7 then
break;
// prepare offset for next check (clockwise)
if (mx = -1) and (my <> -1) then
my:= my - 1
else if (my = -1) and (mx <> 1) then
mx:= mx + 1
else if (mx = 1) and (my <> 1) then
my:= my + 1
else
mx:= mx - 1;
end;
ldx:= collisionX;
ldy:= collisionY;
rdx:= collisionX;
rdy:= collisionY;
// edge-crawl
for i:= 0 to 8 do
begin
// using mx,my as temporary value buffer here
jfr:= 8+li+1;
jto:= 8+li-1;
isColl:= false;
for j:= jfr downto jto do
begin
tmpo:= j mod 8;
// multiplicator k tries to skip small pixels/gaps when possible
for k:= 3 downto 1 do
begin
tmpx:= ldx + k * offset[tmpo,0];
tmpy:= ldy + k * offset[tmpo,1];
if (((tmpy) and LAND_HEIGHT_MASK) = 0) and (((tmpx) and LAND_WIDTH_MASK) = 0)
and (Land[tmpy,tmpx] > TestWord) then
begin
ldx:= tmpx;
ldy:= tmpy;
isColl:= true;
break;
end;
end;
if isColl then
break;
end;
jfr:= 8+ri-1;
jto:= 8+ri+1;
isColl:= false;
for j:= jfr to jto do
begin
tmpo:= j mod 8;
for k:= 3 downto 1 do
begin
tmpx:= rdx + k * offset[tmpo,0];
tmpy:= rdy + k * offset[tmpo,1];
if (((tmpy) and LAND_HEIGHT_MASK) = 0) and (((tmpx) and LAND_WIDTH_MASK) = 0)
and (Land[tmpy,tmpx] > TestWord) then
begin
rdx:= tmpx;
rdy:= tmpy;
isColl:= true;
break;
end;
end;
if isColl then
break;
end;
end;
ldx:= rdx - ldx;
ldy:= rdy - ldy;
if ((ldx = 0) and (ldy = 0)) then
exit;
outDeltaX:= ldx;
outDeltaY:= ldy;
CalcSlopeTangent:= true;
end;
function CalcSlopeNearGear(Gear: PGear; dirX, dirY: LongInt): hwFloat;
var dx, dy: hwFloat;
collX, collY, i, y, x, gx, gy, sdx, sdy: LongInt;
isColl, bSucc: Boolean;
begin
if dirY <> 0 then
begin
y:= hwRound(Gear^.Y) + Gear^.Radius * dirY;
gx:= hwRound(Gear^.X);
collX := gx;
isColl:= false;
if (y and LAND_HEIGHT_MASK) = 0 then
begin
x:= hwRound(Gear^.X) - Gear^.Radius + 1;
i:= x + Gear^.Radius * 2 - 2;
repeat
if (x and LAND_WIDTH_MASK) = 0 then
if Land[y, x] <> 0 then
if (not isColl) or (abs(x-gx) < abs(collX-gx)) then
begin
isColl:= true;
collX := x;
end;
inc(x)
until (x > i);
end;
end
else
begin
x:= hwRound(Gear^.X) + Gear^.Radius * dirX;
gy:= hwRound(Gear^.Y);
collY := gy;
isColl:= false;
if (x and LAND_WIDTH_MASK) = 0 then
begin
y:= hwRound(Gear^.Y) - Gear^.Radius + 1;
i:= y + Gear^.Radius * 2 - 2;
repeat
if (y and LAND_HEIGHT_MASK) = 0 then
if Land[y, x] <> 0 then
if (not isColl) or (abs(y-gy) < abs(collY-gy)) then
begin
isColl:= true;
collY := y;
end;
inc(y)
until (y > i);
end;
end;
if isColl then
begin
// save original dx/dy
dx := Gear^.dX;
dy := Gear^.dY;
if dirY <> 0 then
begin
Gear^.dX.QWordValue:= 0;
Gear^.dX.isNegative:= (collX >= gx);
Gear^.dY:= _1*dirY
end
else
begin
Gear^.dY.QWordValue:= 0;
Gear^.dY.isNegative:= (collY >= gy);
Gear^.dX:= _1*dirX
end;
sdx:= 0;
sdy:= 0;
if dirY <> 0 then
bSucc := CalcSlopeTangent(Gear, collX, y, sdx, sdy, 0)
else bSucc := CalcSlopeTangent(Gear, x, collY, sdx, sdy, 0);
// restore original dx/dy
Gear^.dX := dx;
Gear^.dY := dy;
if bSucc and ((sdx <> 0) or (sdy <> 0)) then
begin
dx := int2hwFloat(sdy) / (abs(sdx) + abs(sdy));
dx.isNegative := (sdx * sdy) < 0;
exit (dx);
end
end;
CalcSlopeNearGear := _0;
end;
function CalcSlopeBelowGear(Gear: PGear): hwFloat;
var dx, dy: hwFloat;
collX, i, y, x, gx, sdx, sdy: LongInt;
isColl, bSucc: Boolean;
begin
y:= hwRound(Gear^.Y) + Gear^.Radius;
gx:= hwRound(Gear^.X);
collX := gx;
isColl:= false;
if (y and LAND_HEIGHT_MASK) = 0 then
begin
x:= hwRound(Gear^.X) - Gear^.Radius + 1;
i:= x + Gear^.Radius * 2 - 2;
repeat
if (x and LAND_WIDTH_MASK) = 0 then
if (Land[y, x] and lfLandMask) <> 0 then
if (not isColl) or (abs(x-gx) < abs(collX-gx)) then
begin
isColl:= true;
collX := x;
end;
inc(x)
until (x > i);
end;
if isColl then
begin
// save original dx/dy
dx := Gear^.dX;
dy := Gear^.dY;
Gear^.dX.QWordValue:= 0;
Gear^.dX.isNegative:= (collX >= gx);
Gear^.dY:= _1;
sdx:= 0;
sdy:= 0;
bSucc := CalcSlopeTangent(Gear, collX, y, sdx, sdy, 255);
// restore original dx/dy
Gear^.dX := dx;
Gear^.dY := dy;
if bSucc and (sdx <> 0) and (sdy <> 0) then
begin
dx := int2hwFloat(sdy) / (abs(sdx) + abs(sdy));
dx.isNegative := (sdx * sdy) < 0;
exit (dx);
end;
end;
CalcSlopeBelowGear := _0;
end;
function CheckGearsUnderSprite(Sprite: TSprite; sprX, sprY, Frame: LongInt): boolean;
var x, y, bpp, h, w, row, col, gx, gy, r, numFramesFirstCol: LongInt;
p: PByteArray;
Image: PSDL_Surface;
Gear: PGear;
begin
CheckGearsUnderSprite := false;
if checkFails(SpritesData[Sprite].Surface <> nil, 'Assert SpritesData[Sprite].Surface failed', true) then exit;
numFramesFirstCol:= SpritesData[Sprite].imageHeight div SpritesData[Sprite].Height;
Image:= SpritesData[Sprite].Surface;
if SDL_MustLock(Image) then
if SDLCheck(SDL_LockSurface(Image) >= 0, 'CheckGearsUnderSprite', true) then exit;
bpp:= Image^.format^.BytesPerPixel;
if checkFails(bpp = 4, 'It should be 32 bpp sprite', true) then
begin
if SDL_MustLock(Image) then
SDL_UnlockSurface(Image);
exit
end;
w:= SpritesData[Sprite].Width;
h:= SpritesData[Sprite].Height;
row:= Frame mod numFramesFirstCol;
col:= Frame div numFramesFirstCol;
p:= PByteArray(@(PByteArray(Image^.pixels)^[ Image^.pitch * row * h + col * w * 4 ]));
Gear:= GearsList;
while Gear <> nil do
begin
if (Gear^.Kind = gtAirMine) or
((Gear^.Kind in [gtCase, gtExplosives, gtTarget, gtKnife, gtMine, gtHedgehog, gtSMine]) and (Gear^.CollisionIndex = -1)) then
begin
gx:= hwRound(Gear^.X);
gy:= hwRound(Gear^.Y);
r:= Gear^.Radius + 1;
if (gx + r >= sprX) and (gx - r < sprX + w) and (gy + r >= sprY) and (gy - r < sprY + h) then
for y := gy - r to gy + r do
for x := gx - r to gx + r do
begin
if (x >= sprX) and (x < sprX + w) and (y >= sprY) and (y < sprY + h)
and (Sqr(x - gx) + Sqr(y - gy) <= Sqr(r))
and (((PLongword(@(p^[Image^.pitch * (y - sprY) + (x - sprX) * 4]))^) and AMask) <> 0) then
begin
CheckGearsUnderSprite := true;
if SDL_MustLock(Image) then
SDL_UnlockSurface(Image);
exit
end
end
end;
Gear := Gear^.NextGear
end;
end;
procedure initModule;
begin
Count:= 0;
end;
procedure freeModule;
begin
end;
end.