gameServer/OfficialServer/Glicko2.hs
author nemo
Wed, 30 Dec 2015 23:30:00 -0500
changeset 11473 023db094b22d
parent 11390 36e1bbb6ecea
permissions -rw-r--r--
Some themers expressed desire to have translucent themes. While the current AA stuff in uLandGraphics won't really allow this to work with LandBackTex properly, seems to me it should be safe to allow alpha for LandTex. Our LandTex should all have alpha of 255 on the existing themes.

{-
    Glicko2, as described in http://www.glicko.net/glicko/glicko2.pdf
-}

module OfficialServer.Glicko2 where

data RatingData = RatingData {
        ratingValue
        , rD
        , volatility :: Double
    }
data GameData = GameData {
        opponentRating :: RatingData,
        gameScore :: Double
    }

τ, ε :: Double
τ = 0.2
ε = 0.000001

g_φ :: Double -> Double
g_φ φ = 1 / sqrt (1 + 3 * φ^2 / pi^2)

calcE :: RatingData -> GameData -> (Double, Double, Double)
calcE oldRating (GameData oppRating s) = (
    1 / (1 + exp (g_φᵢ * (μᵢ - μ)))
    , g_φᵢ
    , s
    )
    where
        μ = (ratingValue oldRating - 1500) / 173.7178
        φ = rD oldRating / 173.7178
        μᵢ = (ratingValue oppRating - 1500) / 173.7178
        φᵢ = rD oppRating / 173.7178
        g_φᵢ = g_φ φᵢ


calcNewRating :: RatingData -> [GameData] -> (Int, RatingData)
calcNewRating oldRating [] = (0, RatingData (ratingValue oldRating) (173.7178 * sqrt (φ ^ 2 + σ ^ 2)) σ)
    where
        φ = rD oldRating / 173.7178
        σ = volatility oldRating

calcNewRating oldRating games = (length games, RatingData (173.7178 * μ' + 1500) (173.7178 * sqrt φ'sqr) σ')
    where
        _Es = map (calcE oldRating) games
        υ = 1 / sum (map υ_p _Es)
        υ_p (_Eᵢ, g_φᵢ, _) = g_φᵢ ^ 2 * _Eᵢ * (1 - _Eᵢ)
        _Δ = υ * part1
        part1 = sum (map _Δ_p _Es)
        _Δ_p (_Eᵢ, g_φᵢ, sᵢ) = g_φᵢ * (sᵢ - _Eᵢ)

        μ = (ratingValue oldRating - 1500) / 173.7178
        φ = rD oldRating / 173.7178
        σ = volatility oldRating

        a = log (σ ^ 2)
        f :: Double -> Double
        f x = exp x * (_Δ ^ 2 - φ ^ 2 - υ - exp x) / 2 / (φ ^ 2 + υ + exp x) ^ 2 - (x - a) / τ ^ 2

        _A = a
        _B = if _Δ ^ 2 > φ ^ 2 + υ then log (_Δ ^ 2 - φ ^ 2 - υ) else head . dropWhile ((>) 0 . f) . map (\k -> a - k * τ) $ [1 ..]
        fA = f _A
        fB = f _B
        σ' = (\(_A, _, _, _) -> exp (_A / 2)) . head . dropWhile (\(_A, _, _B, _) -> abs (_B - _A) > ε) $ iterate step5 (_A, fA, _B, fB)
        step5 (_A, fA, _B, fB) = let _C = _A + (_A - _B) * fA / (fB - fA); fC = f _C in
                                     if fC * fB < 0 then (_B, fB, _C, fC) else (_A, fA / 2, _C, fC)

        φ'sqr = 1 / (1 / (φ ^ 2 + σ' ^ 2) + 1 / υ)
        μ' = μ + φ'sqr * part1