Some themers expressed desire to have translucent themes. While the current AA stuff in uLandGraphics won't really allow this to work with LandBackTex properly, seems to me it should be safe to allow alpha for LandTex. Our LandTex should all have alpha of 255 on the existing themes.
{-
Glicko2, as described in http://www.glicko.net/glicko/glicko2.pdf
-}
module OfficialServer.Glicko2 where
data RatingData = RatingData {
ratingValue
, rD
, volatility :: Double
}
data GameData = GameData {
opponentRating :: RatingData,
gameScore :: Double
}
τ, ε :: Double
τ = 0.2
ε = 0.000001
g_φ :: Double -> Double
g_φ φ = 1 / sqrt (1 + 3 * φ^2 / pi^2)
calcE :: RatingData -> GameData -> (Double, Double, Double)
calcE oldRating (GameData oppRating s) = (
1 / (1 + exp (g_φᵢ * (μᵢ - μ)))
, g_φᵢ
, s
)
where
μ = (ratingValue oldRating - 1500) / 173.7178
φ = rD oldRating / 173.7178
μᵢ = (ratingValue oppRating - 1500) / 173.7178
φᵢ = rD oppRating / 173.7178
g_φᵢ = g_φ φᵢ
calcNewRating :: RatingData -> [GameData] -> (Int, RatingData)
calcNewRating oldRating [] = (0, RatingData (ratingValue oldRating) (173.7178 * sqrt (φ ^ 2 + σ ^ 2)) σ)
where
φ = rD oldRating / 173.7178
σ = volatility oldRating
calcNewRating oldRating games = (length games, RatingData (173.7178 * μ' + 1500) (173.7178 * sqrt φ'sqr) σ')
where
_Es = map (calcE oldRating) games
υ = 1 / sum (map υ_p _Es)
υ_p (_Eᵢ, g_φᵢ, _) = g_φᵢ ^ 2 * _Eᵢ * (1 - _Eᵢ)
_Δ = υ * part1
part1 = sum (map _Δ_p _Es)
_Δ_p (_Eᵢ, g_φᵢ, sᵢ) = g_φᵢ * (sᵢ - _Eᵢ)
μ = (ratingValue oldRating - 1500) / 173.7178
φ = rD oldRating / 173.7178
σ = volatility oldRating
a = log (σ ^ 2)
f :: Double -> Double
f x = exp x * (_Δ ^ 2 - φ ^ 2 - υ - exp x) / 2 / (φ ^ 2 + υ + exp x) ^ 2 - (x - a) / τ ^ 2
_A = a
_B = if _Δ ^ 2 > φ ^ 2 + υ then log (_Δ ^ 2 - φ ^ 2 - υ) else head . dropWhile ((>) 0 . f) . map (\k -> a - k * τ) $ [1 ..]
fA = f _A
fB = f _B
σ' = (\(_A, _, _, _) -> exp (_A / 2)) . head . dropWhile (\(_A, _, _B, _) -> abs (_B - _A) > ε) $ iterate step5 (_A, fA, _B, fB)
step5 (_A, fA, _B, fB) = let _C = _A + (_A - _B) * fA / (fB - fA); fC = f _C in
if fC * fB < 0 then (_B, fB, _C, fC) else (_A, fA / 2, _C, fC)
φ'sqr = 1 / (1 / (φ ^ 2 + σ' ^ 2) + 1 / υ)
μ' = μ + φ'sqr * part1